
Normal convergence

Uniform convergence: A sequence fn converges uniformly on K ⊆ C means ∀ε > 0 ∃N ∀n ≥ N sup
z∈K

|f(z) − g(z)| < ε.

Weierstrass M-test: If ∀z ∈ K |fn(z)| ≤ Mn and

∞
∑

n=1

Mn converges, then

∞
∑

n=1

fn converges uniformly on K.

Normal convergence: Given a domain Ω ⊆ C, a sequence of functions fn : Ω → C converges locally uniformly means
∀z ∈ Ω ∃δ > 0 such that the functions fn restricted to Bδ(z) converge uniformly.
Heine-Borel theorem implies that locally uniform convergence is equivalent to convergence that is uniform on compact subsets.
Topologists call this compact convergence, while complex analysts call it normal convergence.

Compact-open topology: Let X and Y be topological spaces and C(X, Y ) be the set of all continuous functions X → Y .
For each compact K ⊆ X and open U ⊆ Y let S = {f : f(K) ⊆ U}. The topology on C(X, Y ) generated by all such S is
called the compact-open topology. In this topology functions are near when their values are close on compact sets.
The compact-open topology on C(Ω,C) is exactly the topology of normal convergence (see Theorems XII.7.2 [3], 5.1 [4]).

The space of holomorphic functions: Let H(Ω) denote the space of holomorphic functions on Ω. We can construct a
metric for the compact-open topology on H(Ω) ⊆ C(Ω,C) by writing Ω as a union of a tower of compact subsets and using
a bounded uniform metric on these subsets.

Exhaustion by compact sets: A family of compact sets {Kn}n∈Z+
is an exhaustion of Ω means Kn ⊆

◦

Kn+1, Ω =
⋃

n∈Z+

Kn,

and for all compact K ⊆ Ω ∃n with K ⊆ Kn. E.g. let Kn = {z ∈ Ω: |z| ≤ 1, d(z,C \ Ω) ≥ 1/n} (see §2.2 [1])

Metric: On each Kn let un be the uniform metric, i.e. un(f, g) = sup
z∈Kn

|f(z) − g(z)|. Now let dn be a bounded uniform

metric, e.g. dn =
un

1 + un

or dn = inf {1, un}. Finally, define a metric on H(Ω) by d =

∞
∑

n=1

2−ndn.

Normal convergence is equivalent to convergence with respect to d (see Theorem 1.3.2 [5]).

Termwise integration: Let L be a rectifiable curve in Ω. If fn is a normally convergent sequence in H(Ω), then the
limit f is continuous (see Theorems 9.2 [6], 4.4 [4]), thus integrable on L. Since L is compact, fn → f uniformly on L, so
∫

L

fn(z) dz →

∫

L

f(z) dz (see Theorem 9.3 [6]).

Proof:

∣

∣

∣

∣

∫

L

fn(z) dz −

∫

L

f(z) dz

∣

∣

∣

∣

≤

∫

L

|fn(z) − f(z)| |dz| ≤ sup
z∈L

|fn(z) − f(z)|

∫

L

|dz| = uL(fn, f) |L| → 0 as n → ∞.

Weierstrass theorem: H(Ω) is a Fréchet space (complete metric space) (see Theorems 9.4 [6], 2.2.1 [1], VII.2.1 [2]).
Proof: If z0 ∈ Ω, ∃δ > 0 Bδ(z0) ⊆ Ω. Let L ⊆ Bδ(z0) be a closed rectifiable curve. Suppose fn ∈ H(Ω) and fn → f normally.
Integrate termwise and apply Cauchy’s theorem to obtain

∫

L
f(z) dz = 0. By Morera’s theorem f is holomorphic on Bδ(z0),

so f ∈ H(Ω).

Termwise differentiation: If fn → f normally, then f
(k)
n → f (k).

Proof: Use termwise integration and Cauchy’s Integral Formula

∫

L

f(z) dz

(z − z0)k+1
=

2πi

k!
f (k)(z0).

Taylor series: If

∞
∑

k=0

ak(z − z0)
k → f(z) on Bδ(z0), then by the Weierstrass M -test the convergence is normal, so f is

holomorphic on Bδ(z0). Termwise differentiation shows that ak = f (k)(z0)/k!. Conversely suppose f is holomorphic at z0

and let L be a circle centered at z0 such that f is holomorphic inside L. Then for z inside L, f(z) =
1

2πi

∫

L

f(w) dw

w − z
=

1

2πi

∫

L

1

1 −

(

z − z0

w − z0

)

f(w) dw

(w − z0)
=

1

2πi

∫

L

∞
∑

k=0

(

z − z0

w − z0

)k
f(w) dw

(w − z0)
=

∞
∑

k=0

(

1

2πi

∫

L

f(w) dw

(w − z0)
k+1

)

(z − z0)
k =

∞
∑

k=0

ak (z − z0)
k.

Thus, f ∈ H(Ω) ⇔ f can be locally expanded in a power series (analytic) (see §48 [6], 2.2.2 [1], §IV.2 [2]).
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