## From Laurent to Fourier

Suppose  $f(z) = \sum_{k=-\infty}^{\infty} c_k z^k$  is a Laurent series convergent on an annulus  $\{z : 0 < |z| < R\}$ .

If R > 1, the series converges on  $S^1$ , so a substitution  $z = e^{i\theta}$  gives Fourier series  $u(\theta) := f(e^{i\theta}) = \sum_{k=-\infty}^{\infty} c_k e^{ik\theta}$ .

**Real version:** Using Euler's formula, we may rewrite  $c_{-k}e^{-ik\theta} + c_ke^{ik\theta}$  as a linear combination of  $\cos(k\theta)$  and  $\sin(k\theta)$ . We may write  $u(\theta) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\theta) + b_k \sin(k\theta)$ . For real valued u, complexophobes use this form to avoid complex numbers altogether. Exercise: what is the relationship between  $a_k$ ,  $b_k$  and  $c_k$ ?

**Question:** What happens if R = 1?

**Example:**  $\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$ . We have a singularity at 1 and the radius of convergence is 1.

Likewise, the radius of convergence will be 1 for  $\sum_{k=0}^{\infty} \frac{1}{k^p} z^k$  for p = 1, 2, 3. Here are the real parts of partial sums of the Fourier series (for p = 0, n = 10, and for p = 1, 2, 3, n = 100).



For k = 0, if we take larger partial sums, the peak at 0 increases, the frequency increases, but the maxima near  $\pm \pi$  stay at around 1. For p = 1, 2, 3 we see something resembling convergence. The resulting function is seems smoother for larger p.<sup>1</sup>

## Questions:

10

- \* Which periodic functions are representable by Fourier series, and in what sense?
- \* Given  $u(\theta)$  how do we find  $c_k$ ? Answer:  $c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\theta) e^{-ik\theta} d\theta$ . Exercise: find formulas for  $a_k$  and  $b_k$ .

**Example:** Let  $u(\theta) = 1$  for  $-\pi/2 \le \theta \le \pi/2$  and 0 otherwise. Below is a partial sum (n = 40) of its Fourier series. By taking larger sums one can see how the convergence is not uniform near the points of discontinuity — we get overshoots, which get thinner, yet whose amplitude does not diminish as n increases.<sup>2</sup> For all n, the partial sum goes through the average of left and right limits.



## A brief history of Fourier series:

- \* 1700 Sauveur experiments with harmonics
- \* 1740 Daniel Bernoulli (St. Petersburg) superposition of harmonics
- \* 1747 Controversy between Euler and d'Alembert
- \* 1807 Fourier formula for coefficients
- \* 1829 Dirichlet first convergence proof
- \* 1965 Carleson almost everywhere pointwise convergence for square summable functions

Copyright 2000 Dmitry Gokhman

<sup>&</sup>lt;sup>1</sup> This is a general, and extremely useful, feature of Fourier series — the faster the coefficients go to 0, the smoother the result.

 $<sup>^{2}</sup>$  This is known as the Gibbs phenomenon, discovered about a century before Gibbs.