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Introduction

No polynomial of the type X 4 + a4 (with a 6= 0) can be factored.
— Gottfried Leibniz (1702) (he was wrong)

Intersections of curves −→ roots of polynomials
Quadratics: z2 − 2mz + c = 0

z2 − 2mz + m2 = m2 − c (z −m)2 = m2 − c

z = m ±
√

m2 − c

Cubics: z3 + 3az2 + bz + c = 0

(Scipione del Ferro, Niccolò Fontana (Tartaglia), XVI)

To eliminate z2, shift the inflection point z = −a to the origin:

(z − a)3 + 3a(z − a)2 + b(z − a) + c = 0

z3−3z2a + 3za2 − a3+3a(z2 − 2za + a2) + b(z − a) + c = 0

Dmitry Gokhman Fundamental Theorem of Algebra
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Depressed cubics: z3 = 3pz + 2q

(s + t)3 = 3p(s + t) + 2q

s3 + 3s2t + 3st2 + t3 = 3p(s + t) + 2q

s3 + 3st(s + t) + t3 = 3p(s + t) + 2q

s3 + t3 = 2q st = p ⇒ t = p/s

s3 + p3/s3 = 2q (s3)2 − 2qs3 + p3 = 0

s3 = q ±
√

q2 − p3 t3 = q ∓
√

q2 − p3

z = 3
√

q +
√

q2 − p3 + 3
√

q −
√

q2 − p3
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Depressed cubics: z3 = 3pz + 2q
z = 3

√
q +

√
q2 − p3 + 3

√
q −

√
q2 − p3

Rafaello Bombelli’s example: z3 = 15z + 4 (p = 5, q = 2)

z =
3
√

2 +
√
−121 +

3
√

2−
√
−121

z = 3
√

2 + 11i + 3
√

2− 11i where i =
√
−1

(a + ib)± (a′ + ib′) = (a± a′) + i(b ± b′)

(a + ib)(a′ + ib′) = aa′ + iab′ + iba′ + i2bb′

= (aa′−bb′) + i(ab′ + ba′)

(2± i)3 = 8± 12i + 6i2 ± i3 = 8± 12i − 6∓ i = 2± 11i

∴ z = (2 + 11i) + (2− 11i) = 4

Dmitry Gokhman Fundamental Theorem of Algebra
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Higher degree

Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)

Quintics: No general algebraic solution for degree ≥ 5.

(Paolo Ruffini 1799, Niels Abel 1824)

Splitting: p(a) = 0⇔ p(X ) = (X − a)q(X ) for some q(X ).

By long division p(X ) = (X − a)q(X ) + r .

Since deg r < deg(X − a) = 1, r is constant.

Plug in X = a to obtain r = 0. ..
^

The largest m such that p(X ) is a multiple of (X − a)m is
called multiplicity.

Dmitry Gokhman Fundamental Theorem of Algebra
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Complex numbers

C = R[i] = R[X ]/ < X 2 + 1 >

Multiples of X 2 + 1 form a maximal ideal of the polynomial ring
R[X ]. The factor ring C is a field.

Cosets (shifts) of this principal ideal < X 2 + 1 > are equivalence
classes, where two polynomials are considered equivalent when
their difference is in the ideal, i.e. a multiple of X 2 + 1.

Since X 2 ∼ −1, X 3 ∼ −X , X 4 ∼ 1, etc., each coset has a unique
representative of the form a + Xb. The coset is denoted by
z = a + ib.

z ± z ′ = (a + ib)± (a′ + ib′) = (a± a′) + i(b ± b′)
zz ′ = (a + ib)(a′ + ib′) = (aa′ − bb′) + i(ab′ + ba′)

zz = (a + ib)(a− ib) = a2 + b2 = |z|2

where z is the complex conjugate and |z| is the magnitude.

Dmitry Gokhman Fundamental Theorem of Algebra
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Complex plane (Caspar Wessel 1799, Jean-Robert Argand 1806)

Polar coordinates: z = a + ib = r(cos θ + i sin θ) = reiθ

(Roger Cotes 1714, Leonhard Euler 1748)

eiθ = 1 + (iθ) + 1
2! (iθ)

2 + 1
3! (iθ)

3 + ... = 1 + iθ − 1
2!θ

2 − i
3!θ

3 + ...

= (1− 1
2!θ

2 + ...) + i(θ − 1
3!θ

3 + ...) = cosθ + i sin θ

Our jewel. One of the most remarkable, almost astounding, formulas in all of mathematics.

— Richard Feynman.

Linear algebra: C =

{[
a −b
b a

]
: [a,b] ∈ R2

}
[
a −b
b a

] [
a′ −b′

b′ a′

]
=

[
aa′ − bb′ −ab′ − ba′

ba′ + ab′ −bb′ + aa′

]
[
a −b
b a

]
=

[
r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
(isotropic dilation + rotation)

Dmitry Gokhman Fundamental Theorem of Algebra
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Complex multiplication

zz ′ = r(cos θ + i sin θ)r ′(cos θ′ + i sin θ′)

= (rr ′)[cos θ cos θ′− sin θ sin θ′+ i(sin θ cos θ′+ cos θ sin θ′)]

= (rr ′)[cos(θ + θ′) + i sin(θ + θ′)]

zz ′ = (reiθ)(r ′eiθ′) = (rr ′)ei(θ+θ′)

Magnitudes multiply, phases add.

Complex powers f (z) = zn

z2 = (x + iy)2 = (x2 − y2) + i(2xy)

z3 = (x + iy)3 = (x3 − 3xy2) + i(3x2y − y3)

zn = (reiθ)n = rneinθ (trig version: Abraham de Moivre 1722)

Phase gets multiplied by n.

Dmitry Gokhman Fundamental Theorem of Algebra
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.

Early attempts, assuming existence (incomplete ..
_ ):

Jean-Baptiste le Rond d’Alembert (1746),
Leonhard Euler (1749),
Francois Daviet de Foncenex (1759),
Joseph-Louis Lagrange (1772),
Pierre-Simon de Laplace (1795).

James Wood (1798),
Carl Friedrich Gauss (1799),
Jean-Robert Argand (1806).
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.

Let p(z) = a0 + a1z + ...+ an−1zn−1 + zn belong to C[z].
Assume p is never zero. Then a0 6= 0 (otherwise p(0) = 0).

For each r the image of the circle
{

z = reiθ: − π < θ ≤ π
}

is a
loop in C \ {0}. Let ϕ(r) be the winding number w of this loop
around the origin. Since ϕ is continuous and its image is
discrete, ϕ is constant (you can’t change the winding number
without crossing the origin).

For small |z| = r , we have p(z) ≈ a0, so ϕ(r) = 0.

For large r , the dominant term in p(z) is zn, so ϕ(r) = n.

Since ϕ is constant, n = 0. ..
^

Dmitry Gokhman Fundamental Theorem of Algebra
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Complex conjugation: a + ib 7→ a− ib
The flip with respect to the real axis f (z) = z is an automorphism
of C keeping exactly R fixed.

A real polynomial splits into linear factors and quadratics
without real roots (i.e. with negative discriminant).

Suppose p(X ) is a real polynomial. Conjugate p(z) = 0:

0 = p(z) = a0 + a1z + ...anzn = a0 + a1z + ...anzn = p(z)

Thus, complex roots come in conjugate pairs.

(X − (a + ib))(X − (a− ib)) = (X − a)2 + b2

Dmitry Gokhman Fundamental Theorem of Algebra
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Argument principle

The number of zeros (counted with multiplicities) of f (z) inside
a loop is the winding number w of the image of the loop under f
with respect to the origin.
(if f has poles, they need to be counted with negative mutliplicities)

An analytic approach to the winding number w

Complex logarithm (multivalued with period 2πi)

ln z = ln(reiθ) = ln(eln r eiθ) = ln eln r+iθ = ln r + iθ

(angle θ is called the argument (phase) of z)

Integrate the logarithmic derivative of f around a loop γ∫
γ

f ′(z)
f (z)

dz =

∫
γ

(ln f (z))′ dz = ln f (z)|γ = 2πi w

Dmitry Gokhman Fundamental Theorem of Algebra
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n-th roots

Special case: zn = reiθ

Let H = {z ∈ C: zn = 1}. H is a subgroup of the unit circle (which in
turn is a subgroup of the multiplicative group of complex units
C∗ = C \ {0})

H =
{

eik 2π
n : k ∈ Zn

}
— a regular n-gon.

The solution set is a coset of H

z = n
√

rei θn H =
{

n
√

rei θ+2kπ
n : k ∈ Zn

}
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Discussion

Complaints > /dev/null

Ok, just kidding ...

gokhman@math.utsa.edu
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