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No polynomial of the type X* + a* (with a # 0) can be factored.
— Gottfried Leibniz (1702) (he was wrong)
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No polynomial of the type X* + a* (with a # 0) can be factored.
— Gottfried Leibniz (1702) (he was wrong)

@ Intersections of curves — roots of polynomials
@ Quadratics: z2 —2mz+c¢=0

zZZ-2mz+m?P =m? —c¢ (z—mPZ=m—-c¢
z=m+vm? —c
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Introduction

No polynomial of the type X* + a* (with a # 0) can be factored.
— Gottfried Leibniz (1702) (he was wrong)

@ Intersections of curves — roots of polynomials
@ Quadratics: z2 —2mz+c¢=0

zZZ-2mz+m?P =m? —c¢ (z—mPZ=m—-c¢
z=m+vm? —c

@ Cubics: 22 +3az? + bz +¢c=0
(Scipione del Ferro, Niccolo Fontana (Tartaglia), XVI)
To eliminate z2, shift the inflection point z = —a to the origin:
(z—aP+3a(z—aP+bz-—a)+c=0

z3-37%a+3z8% — a®+3a(z? —2za+ &)+ b(z—-a)+c=0
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@ Depressed cubics: 28 = 3pz + 2q
(s+1)%=38p(s+1t)+2q
s +3s%t + 3st? + 13 = 3p(s + t) +2q
s®+3st(s+t)+ 3 =3p(s+1t)+2q
2+ =2q st=p =t=p/s
2+ p%/s® =2q (8°)2 —2gs® +p* =0

S qEVEF  Pogr/E P
Z:\3/q+ q2_p3_|_\3/q_ /q2_p3
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@ Depressed cubics: z2 = 3pz + 2¢g
z={a+ VE-P+ila-
@ Rafaello Bombelli's example: 22 =152 +4 (p=5,9=2)
z=1{2+ =121+ Y2 /=121
z=v2+11i+v2-11i where j = /—1
(a+ib)£(ad +ib)=(azd)+ilbtb)
(a+ib)(a +ib') = ad + iab’ + ibd + i>bb’
= (a@—bb') +i(ab’ + ba')
2+ =84+12i+6/P+i*=8+12i —6Fi=2=+11]

z=@+1)+@-11)=4
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@ Higher degree
e Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)
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@ Higher degree
e Quartics: Lodovico Ferrari (1540)
Cubics and quartics: Girolamo Cardano, Ars Magna (1545)
@ Quintics: No general algebraic solution for degree > 5.

(Paolo Ruffini 1799, Niels Abel 1824)
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@ Higher degree
e Quartics: Lodovico Ferrari (1540)
Cubics and quartics: Girolamo Cardano, Ars Magna (1545)
@ Quintics: No general algebraic solution for degree > 5.
(Paolo Ruffini 1799, Niels Abel 1824)
@ Splitting: p(a) = 0 & p(X) = (X — a)q(X) for some g(X).
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@ Higher degree
e Quartics: Lodovico Ferrari (1540)
Cubics and quartics: Girolamo Cardano, Ars Magna (1545)
@ Quintics: No general algebraic solution for degree > 5.
(Paolo Ruffini 1799, Niels Abel 1824)
@ Splitting: p(a) = 0 & p(X) = (X — a)q(X) for some g(X).
e By long division p(X) = (X — a)g(X) + r.

Since degr < deg(X — a) = 1, r is constant.
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@ Higher degree
e Quartics: Lodovico Ferrari (1540)
Cubics and quartics: Girolamo Cardano, Ars Magna (1545)
@ Quintics: No general algebraic solution for degree > 5.
(Paolo Ruffini 1799, Niels Abel 1824)
@ Splitting: p(a) = 0 & p(X) = (X — a)q(X) for some g(X).

e By long division p(X) = (X — a)g(X) + r.
Since degr < deg(X — a) = 1, r is constant.

e Plugin X = ato obtain r = 0. ¢
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@ Higher degree
e Quartics: Lodovico Ferrari (1540)
Cubics and quartics: Girolamo Cardano, Ars Magna (1545)
@ Quintics: No general algebraic solution for degree > 5.
(Paolo Ruffini 1799, Niels Abel 1824)
@ Splitting: p(a) = 0 & p(X) = (X — a)q(X) for some g(X).

e By long division p(X) = (X — a)g(X) + r.
Since degr < deg(X — a) = 1, r is constant.
e Plugin X = ato obtain r = 0. ¢

e The largest m such that p(X) is a multiple of (X — a)™ is
called multiplicity.
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Complex numbers

C=R[]=R[X]/ < X2+1>

@ Multiples of X2 + 1 form a maximal ideal of the polynomial ring
R[X]. The factor ring C is a field.
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C=R[]=R[X]/ < X?+1>
@ Multiples of X2 + 1 form a maximal ideal of the polynomial ring
R[X]. The factor ring C is a field.

@ Cosets (shifts) of this principal ideal < X? + 1 > are equivalence
classes, where two polynomials are considered equivalent when
their difference is in the ideal, i.e. a multiple of X2 + 1.
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C=R[]=R[X]/ < X?+1>
@ Multiples of X2 + 1 form a maximal ideal of the polynomial ring
R[X]. The factor ring C is a field.

@ Cosets (shifts) of this principal ideal < X? + 1 > are equivalence
classes, where two polynomials are considered equivalent when
their difference is in the ideal, i.e. a multiple of X2 + 1.

@ Since X? ~ —1, X3 ~ —X, X* ~ 1, etc., each coset has a unique
representative of the form a+ Xb. The coset is denoted by
z=a+ib.
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C=R[]=R[X]/ < X?+1>
@ Multiples of X2 + 1 form a maximal ideal of the polynomial ring
R[X]. The factor ring C is a field.

@ Cosets (shifts) of this principal ideal < X? + 1 > are equivalence
classes, where two polynomials are considered equivalent when
their difference is in the ideal, i.e. a multiple of X2 + 1.

@ Since X? ~ —1, X3 ~ —X, X* ~ 1, etc., each coset has a unique
representative of the form a + Xb. The coset is denoted by
z=a+ib.

@ z+tZ =(a+ib)t(@+it)=(axad)+i(btb)
zz' = (a+ib)(@ +ib') = (ad — bb') + i(ab’ + ba')
7z = (a+ ib)(a—ib) = & + b? = |z°
where Z is the complex conjugate and |z| is the magnitude.
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@ Complex plane (Caspar Wessel 1799, Jean-Robert Argand 1806)
Polar coordinates: z = a+ ib = r(cos § + isin ) = re’
(Roger Cotes 1714, Leonhard Euler 1748)
€% =14 (i) + L(10° + Z(i0)° +...=1+i0 — 162 — 16°+ ...

=(1— 50+ .)+i(0— 36°+..)=cosb +isino
Our jewel. One of the most remarkable, almost astounding, formulas in all of mathematics.

— Richard Feynman.
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@ Complex plane (Caspar Wessel 1799, Jean-Robert Argand 1806)
Polar coordinates: z = a+ ib = r(cos § + isin ) = re’
(Roger Cotes 1714, Leonhard Euler 1748)
€% =14 (i) + L(10° + Z(i0)° +...=1+i0 — 162 — 16°+ ...

=(1— 50+ .)+i(0— 36°+..)=cosb +isino
Our jewel. One of the most remarkable, almost astounding, formulas in all of mathematics.

— Richard Feynman.

@ Linear algebra: C = {[Z _g} :[a,b] € R"’}

a —b||d —-b| |aad—-bb -—ab —bd
b a|l|b 4&| |bd+ab -—bb+ad

g =g _ |0 ) jemed —ind (isotropic dilation + rotation)
b a|l |0 r||sind cosd ! pic aiation + !
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@ Complex multiplication
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@ Complex multiplication
e zz' =r(cosf + isinf)r'(cosfd’ +isind’)
= (rr')[cos @ cos b’ —sin@sin 6’ + i(sin § cos 6’ + cos 6 sin§')]
= (rr')[cos(8 + 0") + isin(6 + 0")]
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@ Complex multiplication
e zz' =r(cosf + isinf)r'(cosfd’ +isind’)
= (rr')[cos @ cos b’ —sin@sin 6’ + i(sin § cos 6’ + cos 6 sin§')]
= (rr')[cos(8 + 0") + isin(6 + 0")]
o zz/ = (ré®)(re’’) = (rr')el?+?)

Magnitudes multiply, phases add.

Dmitry Gokhman Fundamental Theorem of Algebra



Complex numbers

@ Complex multiplication
e zz' =r(cosf + isinf)r'(cosfd’ +isind’)
= (rr')[cos @ cos b’ —sin@sin 6’ + i(sin § cos 6’ + cos 6 sin§')]
= (rr')[cos(8 + 0") + isin(6 + 0")]
o zz' = (re®)(r'e?") = (rr')el¢+0")
Magnitudes multiply, phases add.

@ Complex powers f(z) = z"
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@ Complex multiplication
e zz' =r(cosf + isinf)r'(cosfd’ +isind’)
= (rr')[cos @ cos b’ —sin@sin 6’ + i(sin § cos 6’ + cos 6 sin§')]
= (rr')[cos(8 + 0") + isin(6 + 0")]
o zz/ = (ré®)(re’’) = (rr')el?+?)
Magnitudes multiply, phases add.
@ Complex powers f(z) = z"

0 22 = (x+iy)? = (x* — y?) +i(2xy)
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@ Complex multiplication
e zz' =r(cosf + isinf)r'(cosfd’ +isind’)
= (rr')[cos @ cos b’ —sin@sin 6’ + i(sin § cos 6’ + cos 6 sin§')]
= (rr')[cos(8 + 0") + isin(6 + 0")]
o zz' = (re®)(r'e?") = (rr')el¢+0")
Magnitudes multiply, phases add.
@ Complex powers f(z) = z"
0 22 = (x+iy)? = (x* — y?) +i(2xy)
o 2% = (x+1iy)® = (x®—3xy?) +i(3x%y — y®)
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@ Complex multiplication
e zz' =r(cosf + isinf)r'(cosfd’ +isind’)
= (rr')[cos @ cos b’ —sin@sin 6’ + i(sin § cos 6’ + cos 6 sin§')]
= (rr')[cos(8 + 0") + isin(6 + 0")]
o zz' = (re®)(r'e?") = (rr')el¢+0")
Magnitudes multiply, phases add.
@ Complex powers f(z) = z"
0 22 = (x+iy)? = (x* — y?) +i(2xy)
o 28 = (x+iy)® = (x® - 3xy?) + i(3x%y — ¥?)
o z" = (re")" = r"e (trig version: Abraham de Moivre 1722)

Phase gets multiplied by n.
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.
@ Early attempts, assuming existence (incomplete ~):
Jean-Baptiste le Rond d’Alembert (1746),
Leonhard Euler (1749),
Francois Daviet de Foncenex (1759),
Joseph-Louis Lagrange (1772),
Pierre-Simon de Laplace (1795).
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.
@ Early attempts, assuming existence (incomplete ~):
Jean-Baptiste le Rond d’Alembert (1746),
Leonhard Euler (1749),
Francois Daviet de Foncenex (1759),
Joseph-Louis Lagrange (1772),
Pierre-Simon de Laplace (1795).

@ James Wood (1798),
Carl Friedrich Gauss (1799),
Jean-Robert Argand (1806).
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.

@ Letp(z)=ap+ajz+..+ap1z"' + z" belong to C[z].
Assume p is never zero. Then ap # 0 (otherwise p(0) = 0).

Dmitry Gokhman Fundamental Theorem of Algebra



Fundamental Theorem of Algebra

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.

@ Letp(z)=ap+ajz+..+ap1z"' + z" belong to C[z].
Assume p is never zero. Then ap # 0 (otherwise p(0) = 0).

@ For each r the image of the circle {z =re’: — 7 <6 <r}isa
loop in C\ {0}. Let ¢(r) be the winding number w of this loop
around the origin. Since ¢ is continuous and its image is
discrete, ¢ is constant (you can’t change the winding number
without crossing the origin).
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.

@ Letp(z)=ap+ajz+..+ap1z"' + z" belong to C[z].
Assume p is never zero. Then ap # 0 (otherwise p(0) = 0).

@ For each r the image of the circle {z =re’: — 7 <6 <r}isa
loop in C\ {0}. Let ¢(r) be the winding number w of this loop
around the origin. Since ¢ is continuous and its image is
discrete, ¢ is constant (you can’t change the winding number
without crossing the origin).

@ For small |z| = r, we have p(z) ~ ap, S0 ¢(r) = 0.
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.

@ Letp(z)=ap+ajz+..+ap1z"' + z" belong to C[z].
Assume p is never zero. Then ap # 0 (otherwise p(0) = 0).

@ For each r the image of the circle {z =re’: — 7 <6 <r}isa
loop in C\ {0}. Let ¢(r) be the winding number w of this loop
around the origin. Since ¢ is continuous and its image is
discrete, ¢ is constant (you can’t change the winding number
without crossing the origin).

@ For small |z| = r, we have p(z) = ap, SO ¢(r) = 0.

@ For large r, the dominant term in p(z) is z", so ¢(r) = n.
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Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and
therefore, by induction, splits completely into linear factors.

@ Letp(z)=ap+ajz+..+ap1z"' + z" belong to C[z].
Assume p is never zero. Then ap # 0 (otherwise p(0) = 0).

@ For each r the image of the circle {z =re’: — 7 <6 <r}isa
loop in C\ {0}. Let ¢(r) be the winding number w of this loop
around the origin. Since ¢ is continuous and its image is
discrete, ¢ is constant (you can’t change the winding number
without crossing the origin).

@ For small |z| = r, we have p(z) =~ ag, SO ¢(r) = 0.
@ For large r, the dominant term in p(z) is z", so ¢(r) = n.

@ Since ¢ is constant, n = 0. N
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@ Complex conjugation: a+ib +— a—ib
The flip with respect to the real axis f(z) = Z is an automorphism
of C keeping exactly R fixed.
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@ Complex conjugation: a+ib +— a—ib
The flip with respect to the real axis f(z) = Z is an automorphism
of C keeping exactly R fixed.

@ A real polynomial splits into linear factors and quadratics
without real roots (i.e. with negative discriminant).
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@ Complex conjugation: a+ib +— a—ib
The flip with respect to the real axis f(z) = Z is an automorphism
of C keeping exactly R fixed.

@ A real polynomial splits into linear factors and quadratics
without real roots (i.e. with negative discriminant).

e Suppose p(X) is a real polynomial. Conjugate p(z) = 0:

O=p(z)=a+az+..az" = ap+a1Z+...a,z2" = p(2)

Thus, complex roots come in conjugate pairs.
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@ Complex conjugation: a+ib +— a—ib
The flip with respect to the real axis f(z) = Z is an automorphism
of C keeping exactly R fixed.

@ A real polynomial splits into linear factors and quadratics
without real roots (i.e. with negative discriminant).

e Suppose p(X) is a real polynomial. Conjugate p(z) = 0:

O=p(z)=a+az+..az" = ap+a1Z+...a,z2" = p(2)

Thus, complex roots come in conjugate pairs.
o (X—(a+ib)(X—(a—ib))=(X—a)2+b?
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Argument principle

The number of zeros (counted with multiplicities) of f(z) inside
a loop is the winding number w of the image of the loop under f
with respect to the origin.

(if f has poles, they need to be counted with negative mutliplicities)
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Argument principle

The number of zeros (counted with multiplicities) of f(z) inside
a loop is the winding number w of the image of the loop under f
with respect to the origin.

(if f has poles, they need to be counted with negative mutliplicities)

@ An analytic approach to the winding number w
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Argument principle

The number of zeros (counted with multiplicities) of f(z) inside
a loop is the winding number w of the image of the loop under f
with respect to the origin.

(if f has poles, they need to be counted with negative mutliplicities)

@ An analytic approach to the winding number w
e Complex logarithm (multivalued with period 27/)
Inz =In(re’’) = In(e""e’) = Ine" "+ =Inr 4 io

(angle 0 is called the argument (phase) of z)
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Argument principle

The number of zeros (counted with multiplicities) of f(z) inside
a loop is the winding number w of the image of the loop under f
with respect to the origin.

(if f has poles, they need to be counted with negative mutliplicities)

@ An analytic approach to the winding number w
e Complex logarithm (multivalued with period 27/)
Inz =In(re’’) = In(e""e’) = Ine" "+ =Inr 4 io
(angle 0 is called the argument (phase) of z)

e Integrate the logarithmic derivative of f around a loop ~
f'(2)
, f(2)

dz = /(In f(z)) dz = Inf(z)|, =2riw
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n-th roots

Special case: 2" = re'

Let H={z € C: z" =1}. H is a subgroup of the unit circle (which in
turn is a subgroup of the multiplicative group of complex units
C*=C\{0})

H= {e”‘ZT”: k e Zn} — aregular n-gon.
The solution set is a coset of H
z=1reliH= {\”ﬁe’%: k e Z,,}
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Discussion

Complaints > /dev/null
Ok, just kidding ...

gokhman@math.utsa.edu
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