
Spaces of complex valued functions

If G is a nonempty set, let CG := {u : G→C}.
With pointwise algebraic operations CG inherits ring structure from C. In particular, CG is a complex vector space.
For G := {k ∈ Z: 1 ≤ k ≤ n}, CG = Cn with uk := u(k).

Inner product (dot product) on Cn: 〈u, v〉 :=

n
∑

k=1

ukvk

✺ positive: 〈u, u〉 ≥ 0, definite: 〈u, u〉 = 0 ⇒ u = 0

✺ conjugate symmetric: 〈u, v〉 = 〈v, u〉

✺ conjugate bilinear: 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉, 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉, 〈cu, v〉 = c 〈u, v〉, 〈u, cv〉 = c 〈u, v〉

Norms on Cn: p-norm: |u|p :=

(

n
∑

k=1

|uk|
p

)1/p

, where p ≥ 1; |u|
∞

= max {|uk| : 1 ≤ k ≤ n}

✺ positive: |u|p ≥ 0, definite: |u|p = 0 ⇒ u = 0

✺ Hölder 1 inequality: |〈u, v〉| ≤ |u|p |v|q , where p + q = pq

Proof (p = 2): 0 ≤ 〈u − cv, u − cv〉 = 〈u, u〉 − c 〈u, v〉 − c 〈v, u〉 + cc 〈v, v〉, let c = 〈u, v〉 / 〈v, v〉.

✺ Minkowski inequality (triangle inequality): |u + v|p ≤ |u|p + |v|p

Proof:

n
∑

k=1

|uk + vk|
p

=

n
∑

k=1

|uk| |uk + vk|
p−1

+

n
∑

k=1

|vk | |uk + vk|
p−1

, apply Hölder.

✺ Polarization identity: |u + v|
2

2
+ |u − v|

2

2
= 2

(

|u|
2

2
+ |v|

2

2

)

, so 4 〈u, v〉 = |u + v|
2

2
− |u − v|

2

2

Complex valued functions on topological groups: In the definition of inner product we “sum” over G, so G must have
a measure. We will look at topological groups with Haar measure. Specifically we are interested in the following examples:

✺ G = Z+ or G = Z (CG = infinite sequences)

✺ G = T := the unit circle S1 ⊂ C with dσ = dθ/(2π) (CG = periodic functions of a real variable)

✺ G = R with dx (CG = functions of a real variable)

Lebesgue spaces: For discrete G, `p :=

{

u ∈ CG:
∑

k∈G

|uk|
p < ∞

}

Definitions of p-norm are the same as above. In `2, in view of Hölder’s inequality, we may define an inner product as well.

For continuous G, Lp(G) :=

{

u ∈ CG:

∫

G

|u(t)|
p
dt < ∞

}

/ ∼, where u ∼ v ⇔ {t ∈ G: u(t) 6= v(t)} has measure zero.

Norm on Lp(G): |u|p :=

(
∫

G

|u(t)|
p
dt

)1/p

. Inner product on L2(G): 〈u, v〉 :=

∫

G

u(t)v(t) dt

Theorem: L2(T) ⊂ L1(T)

Proof: |f |
1

=
〈

f, f/ |f |
〉

Riesz-Fischer Theorem (Cauchy criterion for L2): L2 is complete: a sequence un ∈ L2 converges in the mean, i.e.
∃u ∈ L2 with |u − un|2 → 0,⇔ ∀ε > 0 ∃N such that n, m ≥ N ⇒ |un − um|

2
< ε.

Weak convergence: In L2, un → u weakly means ∀v ∈ L2 〈un, v〉 → 〈u, v〉.

Theorem: un → u weakly ⇒ |u|
2
≤ lim inf |un|2.

Proof: Suppose |un|2 ≤ b for large n. Then |u|
2

2
= 〈u, u〉 = lim 〈un, u〉 ≤ b |u|

2
, so |u|

2
≤ b.

Theorem: un → u in the mean ⇔ un → u weakly and |un|2 → |u|
2
.

Proof: |〈un, v〉 − 〈u, v〉| = |〈un − u, v〉| ≤ |un − u|
2
|v|

2
, ||un|2 − |u|

2
| ≤ |un − u|

2
.

Conversely |u − un|
2

2
= |un|

2

2
− 〈un, u〉 − 〈u, un〉 + |u|

2

2
→ |u|

2

2
− 〈u, u〉 − 〈u, u〉+ |u|

2

2
= 0.

Theorem of Choice: L2 is separable and every bounded sequence has a weakly convergent subsequence.
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1The extension of this and Minkowski inequality to integrals is due to F. Riesz. Special case for p = 2 is known as Cauchy inequality and its

extension to integrals, known as Schwartz inequality, is due to Bunyakovsky.


