
Holomorphic functions
Liouville’s Theorem: If f ∈ H(C) is bounded, then f is constant.
Proof: Cauchy’s Integral Formula with k > 0 over a circle of radius r at 0 ⇒ |ck| ≤ sup |f(z)| /rk → 0 as r → ∞.

Fundamental Theorem of Algebra (K.F. Gauss): If f ∈ C [X ] ⊂ H(C) is not constant, then V (f) 6= Ø.
Proof: Suppose p has no zeros. Since p(z) → ∞ as z → ∞, 1/p ∈ H(C) is bounded.

Analytic continuation principle: If Ω ⊆ C is a domain and f ∈ H(Ω), then V (f)
def
= {z ∈ Ω: f(z) = 0} is discrete or = Ω.

Proof: Since f is continuous, V (f) is closed in Ω. Suppose f(z0) = 0 and f 6≡ 0 in any neighborhood of z0. Expand-
ing f in a Taylor series at z0 and factoring out the maximum power of z − z0 we can write f(z) = (z − z0)

ng(z),
where g(z0) 6= 0. Since g is continuous, g 6= 0 in a neighborhood of z0, so z0 is not a limit point of V (f). Let
U = {z ∈ Ω: f ≡ 0 in some neighborhood of z}. Then U is closed and open in Ω, which is connected, so U = Ø or U = Ω.

Corollary: H(Ω) is an integral domain.
Proof: Let f, g ∈ H(Ω). If fg ≡ 0, then V (fg) = V (f)

⋃

V (g) = Ω. Since V (f), V (g) are not both discrete, f ≡ 0 or g ≡ 0.

Open Mapping Theorem: If f ∈ H(Ω) is not constant, then f is open (takes open sets to open sets).
Proof: Assume 0 ∈ Ω, f(0) = 0 and let D be a disk at 0 with ρ = min

∂D
|f | > 0. If Bρ(0) 6⊆ f(Ω), then Bρ/2(0) ⊆ f(Ω). Indeed,

if |w| < ρ and f(w) 6∈ f(Ω), then g(z) =
1

f(z) − w
∈ H(Ω), so |g(0)| =

1

|w|
≤ sup

∂D

1

|f(z) − w|
≤

1

ρ − |w|
and |w| ≥ ρ/2.

Maximum Modulus Principle: If f ∈ H(Ω) is not constant, then |f | does not attain a maximum in Ω.
Proof: Modulus Ω → [0,∞) is an open map, so |f | is an open map. Thus, |f(Ω)| ⊆ [0,∞) is open and has no maximum.

Laurent Series: If Ω is an annulus at z0 and f ∈ H(Ω), then f(z) =

∞
∑

k=−∞

ck(z−z0)
k with ck =

1

2πi

∫

L

(w−z0)
−k−1f(w) dw.

Proof: Let z ∈ Ω and L0 and L1 two circles in Ω around z0 with z inside L1 and outside L0. Since L1 − L0 is a boundary,

Cauchy’s integral formula gives f(z) =
1

2πi

∫

L1−L0

f(w)

w − z
dw =

1

2πi

(
∫

L1

f(w)

w − z
dw −

∫

L0

f(w)

w − z
dw

)

, but

∫

L1

f(w) dw

w − z
=

∫

L1

1

1 −

(

z − z0

w − z0

)

f(w) dw

(w − z0)
=

∫

L1

∞
∑

k=0

(

z − z0

w − z0

)k
f(w) dw

(w − z0)
=

∞
∑

k=0

(

∫

L1

f(w) dw

(w − z0)
k+1

)

(z − z0)
k

and

∫

L0

f(w) dw

w − z
= −

∫

L0

1

1 −

(

w − z0

z − z0

)

f(w) dw

(z − z0)
= −

∫

L0

∞
∑

k=0

(

w − z0

z − z0

)k
f(w) dw

(z − z0)
= −

∞
∑

k=0

(
∫

L0

(w − z0)
kf(w) dw

)

(z−z0)
−k−1.

Note: If f(z) =

∞
∑

k=−∞

ck(z − z0)
k in an annulus Ω and L is a circle in Ω, then by termwise integration

∫

L

f(z) dz = 2πi c−1.

Singularities: z0 ∈ Ω is a singularity of f if f ∈ H(U \ {z0}) for a disc U at z0. If f 6≡ 0, not all ck = 0 in the Laurent
expansion of f in the annulus U \ {z0}. Let ordz0

f = inf {k: ck 6= 0}. A point z is an essential singularity of f when
ordzf = −∞, a pole of multiplicity n when ordzf = −n < 0, a removable singularity when ordzf ≥ 0, and a zero of
multiplicity n when ordzf = n > 0.

Riemann Extension Theorem: Let z0 ∈ Ω. If f ∈ H(Ω \ {z0}) is bounded, then we can extend f ∈ H(Ω).
Proof: Let L be a circle around z0 of radius r and M = sup |f(z)|. Since |ck| ≤ 2πr−kM , ck = 0 for k < 0.

Meromorphic functions: A function is called meromorphic (h ∈ M(Ω)) when h ∈ H(Ω \ S) and h is in the field of
fractions of H(U) for all sufficiently small neighborhoods U ⊆ Ω.

Theorem: h ∈ M(Ω) ⇔ ∃ discrete S ⊂ Ω with h ∈ H(Ω \ S) and points of S are not essential singularities of h.
Proof: Let h = f/g with f, g ∈ H(Ω) and g 6≡ 0. Then h ∈ H(Ω \ V (g)). Let z0 ∈ V (g) and expand f and g in Taylor series

f(z) =

∞
∑

k=0

ak(z − z0)
k, g(z) =

∞
∑

k=0

bk(z − z0)
k. Let g(z) = (z − z0)

nw(z), where w(z0) 6= 0. Then f/w is holomorphic in a

neighborhood of z0, so f(z)/w(z) =

∞
∑

k=0

ck(z − z0)
k and f(z)/g(z) =

∞
∑

k=0

ck(z − z0)
k−n =

∞
∑

k=−n

ck+n(z − z0)
k . Conversely, let

h ∈ H(Ω \ S) and z0 ∈ S. Expand h in a Laurent series h(z) =

∞
∑

k=n

ck(z − z0)
k. Then h(z) =

∞
∑

k=0

ck−n(z − z0)
k/(z − z0)

n.

Theorem: If z ∈ Ω, ordz : M(Ω)\{0}→Z is a valuation, i.e. ordz(fg) = ordzf +ordzg and ordz(f +g) ≥ min {ordzf, ordzg}.

Value distribution: The behavior of a meromorphic function h in a neighborhood of a singulariy z0 is fairly simple: either z0

is removable so lim
z→z0

h(z) = h(z0) or lim
z→z0

h(z) = ∞. If z0 is an essential singularity of f ∈ H(Ω \ {z0}), then the complement

of f(Ω) is a singleton or empty (E. Picard).
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