Pointwise convergence of Fourier series

Dirichlet kernel: $D_n := \sum_{k=-n}^n \exp(ik\theta) = \frac{\sin\left[\left(n+\frac{1}{2}\right)\theta\right]}{\sin\left[\frac{1}{2}\theta\right]}, s_n = D_n * u.$ Not a summability kernel!

Fejér's theorem: $\sigma_n \to \check{u}$, where $\check{u}(\theta) = \frac{1}{2} \lim_{h \to 0} [u(\theta - h) + u(\theta + h)].$

Proof: K_n is even and $\sup \{K_n(\theta): -\delta < \theta < \delta\} \to 0$

$$\sigma_n - \check{u} = K_n * u - \check{u} = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(\tau) \left[u(\theta - \tau) - \check{u}(\theta) \right] d\tau = \frac{1}{\pi} \left[\int_0^{\delta} + \int_{\delta}^{\pi} K_n(\tau) \left[\frac{u(\theta - \tau) + u(\theta + \tau)}{2} - \check{u}(\theta) \right] d\tau \right] d\tau$$

For the first integral the expression in the brackets is small and for the second K_n is small.

- * At points of continuity of $u, \sigma_n \to u$.
- * On compact subsets of continuity of u the convergence is uniform.

Proof: Use uniform continuity of u to choose one δ for all θ .

- * Existence of limit in Fejér's theorem can be weakened (Lebesgue) to $\exists \check{u}$ with $\lim_{h\to 0} \int_0^h \left| \frac{u(\theta-\tau)+u(\theta+\tau)}{2} \check{u} \right| d\tau = 0$.
- * This $\check{u} = u$ a.e., so $\sigma_n \to u$ a.e.
- * $u \in L_2(\mathbf{T}) \Rightarrow \text{Fourier series} \to u \text{ a.e. (Carleson, 1965)}$
- * $u \in L_p(\mathbf{T}), p > 1 \Rightarrow$ Fourier series $\to u$ in the mean (we have seen this for L_2).
- * \exists continuous u whose Fourier series diverges at a point!

Mercer's theorem: $u \in L_1 \Rightarrow \widehat{u}_k \to 0$

$$\textit{Proof: } \forall \varepsilon > 0, \exists \text{ trig polynomial } p \text{ with } |u - p|_1 < \varepsilon. \text{ For } n > \deg p, \ |\widehat{u}_n| = \left|\widehat{(u - p)_n}\right| \leq |u - p|_1.$$

Hardy's Tauberian theorem: $u \in L_1(\mathbf{T}), \widehat{u}_k = \mathcal{O}\left(\frac{1}{k}\right) \Rightarrow$ the convergence of s_n is the same as that of σ_n .

Proof: Let $\varepsilon > 0$. $\exists \lambda > 1$ such that $\limsup \sum_{n < |k| \le \lambda_n} |\widehat{u}_k| < \varepsilon$.

$$s_n = \frac{[[\lambda n]] + 1}{[[\lambda n]] - n} \sigma_{[[\lambda n]]} - \frac{n+1}{[[\lambda n]] - n} \sigma_n - \frac{[[\lambda n]] + 1}{[[\lambda n]] - n} \sum_{n < |k| \le \lambda n} \left[1 - \frac{|k|}{[[\lambda n]] + 1} \right] \widehat{u}_k \exp(ik\theta)$$

For large enough n (dependent only on the rate of convergence of σ_k) the sum $< \varepsilon$, so $|s_n - \lim \sigma_k| < 2\varepsilon$.

* If u is of bounded variation, then the hypothesis (and conclusion) of the Tauberian theorem hold.

Proof:
$$|\widehat{u}_k| \le \frac{\operatorname{var}(u)}{2\pi |k|}$$

Reference: Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968 (Dover, 1976)

Copyright 2000 Dmitry Gokhman

 $^{^{1}}$ Analogous result for the continuous Fourier transform is known as the Riemann-Lebesgue Lemma.