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Introduction

This is the book accompanying the video Gyroscopes and
Boomerangs. It is the second in the series of Royal Institution
Mathematics Masterclass Videos. The first was on Geometry and
Perspective, and this one follows the same pattern. The idea is to
provide enrichment material for gifted 13-year olds. The subjects were
chosen for their interest and importance, and to complement the school
mathematics syllabus.

This video is about mechanics. Developing an intuition about
mechanics is as important as becoming literate and numerate. For in
today's world we all have to use machines of one sort or another, and an
intuition about mechanics enables us to handle them more efficiently,
more sympathetically and more enjoyably.

Unfortunately in some schools the teaching of mechanics has been
dwindling due to the rise of computing and statistics. This is a great pity
because mechanics is the cornerstone of physics and engineering, and
has been one of the main driving forces behind the creation of
mathematics ever since Newton discovered the laws of motion in 1666.

Mechanics also provides an ideal illustration of the scientific method.
First you observe something interesting and make a mathematical model
of it. Then you work out the formulae, put in the measurements, make
the predictions, and finally test them by experiment. In mechanics the
observations are intriguing, the formulae are non-trivial, the
measurements are straightforward, the predictions are precise, the
experiments are easy to do needing only the simplest of equipment, and
the predictions can be confirmed with surprising accuracy. There is no
better way to learn science.

So which part of mechanics should we start with? My choice was to
go for spinning motion because it is the more surprising. Gyros are
fascinating, and discovering why they work can be exciting and deeply
satisfying. Their behaviour can be described by a simple gyro law that
explains why they precess, which way they precess, and why they go on
precessing. The law also explains the behaviour of tops and boomerangs,
and the precessions of the earth's axis and the moon's orbit. There is no
need to use calculus: one can develop the theory of precession using only
elementary mathematics, and work out a formula for the precession time
that is easy to test.

I hope this video and book may appeal to people of all ages, but I
particularly address myself to young students. If you are about 12 or 13
you will have reached the.age when you can think abstractly, and can
begin to appreciate the subtleties of motion. I hope you will be tempted
to repeat the experiments for yourself and to make your own boomerang.



How to use this book

The video is made in three parts:

Part 1: The Gyro Law (30 minutes)
Part 2: The precession time (15 minutes)
Part 3: Tops, eggs and boomerangs (15 minutes).

The book contains notes summarising each part of the video. Also,
more importantly, it contains worksheets to do after seeing each part and
before seeing the next part. If you can tackle and solve all the problems
on each of the first two worksheets you will not only have a better
understanding of the theory, but you will also be able to appreciate the
next part of the video much more deeply. The last two worksheets
provide an opportunity to reinforce what has been learnt, and to have a go
at some harder problems. The solutions to the problems on all the
worksheets are given at the end of the book.

If you are a teacher using the video to run a class I recommend
showing one part at a time. After each part photocopy the worksheet for
that part and hand it out as an exercise for your students. You may also
want to photocopy the notes for them to have as a reference. When they
have had a chance to try the problems you can use the solutions to help
them with the ones they have not been able to solve.

If you are a young student using the video for private study I urge you
to follow the same pattern (and not to cheat!). You will get far more out of
it if you do things in the right order. Discipline yourself to switch off the
video after watching Part 1, and have a go at Worksheet 1 before watching
Part 2, because this will enable you to calculate and predict the results of
the experiments in Part 2: then it will be more exciting to watch and see
if your predictions are correct.

Similarly if you do Worksheet 2 before watching Part 3 you will have a
chance to discover for yourself how tops work before seeing them in
motion, and in slow motion. Anything you discover for yourself you will
never forget, especially when you then see it confirmed with your own
eyes.

Worksheet 3 is for you to do at the end of the video and explains how
to make your own boomerang. Worksheet 4 is a bit harder and gives the
proof of why boomerangs work.

Finally there are two appendices for those of you who are curious and
want to go into the subject more deeply. Appendix 1 proves that
Newton's 'law of linear motion implies the analogous law for spinning
motion, and gives a simple introduction to calculus. Appendix 2 proves
why a spinning egg stands on end.
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Gyroscopes and boomerangs

Notes on the Video Part 1: The Gyro Law

A gyro is anything that is symmetrical about an axis and is spinning
about that axis. Examples of gyros include wheels, tops, drawing pins,
eggs, little gyros that you can buy in toy shops, precision gyros in
navigational instruments, and large gyros in ship stabilisers. At first sight
gyros seem to behave in a mysterious way, and the aim of this video is to
~ypravel those mysteries and explain their behaviour in terms of Newton's
faw of motion. "

In the first experiment if you hold the axis of a spinning gyro and try
to move it so that it points in another direction then you will find it will
resist your attempt and will tend to go off in a different direction; it
seems to develop a life of its own. In the second experiment if a gyro is
hung off centre then the axis will slowly rotate about the point of
suspension; this slow rotation is called precession. Before we can explain
these examples of spinning motion, however, we shall start with the
much simpler case of linear motion.

Linear motion

If we apply a force to a moving object then this will cause a change in
velocity.

old velocity

+ force

Question: ~ If we know the old velocity and the force how do we
predict the new velocity?

Answer: It depends on (1) mass, (2) time and (3) vectors.

(1) Mass. The mass of the object is important because the larger the
mass the smaller the change in velocity. We take account
of mass by introducing the concept of momentum, which
is defined:

‘momentum = mass X velocity.

N

Intuitively momentum measures the reluctance of the
moving object to be deflected from its path. We can then
replace the velocity arrows by momentum arrows in the
same directions.



(2) Time.

(3) Vectors.

The length of time that the force is applied is important
because the longer the time the greater change in velocity.
We take account of time by replacing the force arrow by a
"force x time" arrow in the same direction.

o
e“"o
©0%
e
o
old momentum
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force x time

Anything that has size and direction is called a vector. For
example velocity is a vector, because the size of velocity is
the speed in centimetres per second and the direction of
velocity is the direction of motion. A vector can be
represented by an arrow, or equally well by any other
parallel arrow of the same size. All the arrows in the two
diagrams above represent vectors.

Given two vectors A and B define their sum A+B as follows:
move B to fit on the end of A, and define A+B to be the
vector going from the beginning of A to the end of B.

_.--N\B
. &7
A+B B
A

An alternative method is to construct a parallelogram with
sides equal to A and B, and then the diagonal gives A+B.
This method is called the parallelogram rule.




Newton's law of linear motion

New momentum = (old momentum) + (force x time)

$985
aed force x time

=
.

old momentum

This enables us to predict the new momentum, and hence the new
velocity, giving the answer to the question at the beginning.

Remark 1: We have drawn the force at right-angles to the momentum
although of course it could be at any angle.

Remark 2: The usual version of Newton's law involves acceleration, but
we choose this simpler version here in order to avoid having
to worry about acceleration. The two versions are shown to
be equivalent in Appendix 1.

Spinning motion

We now want to introduce a spinning version of Newton's Law. This
will be done by replacing the linear words force, velocity and momentum
by the corresponding spinning words torque, spin and angular
momentum. The first thing to do is to explain the meaning of those
words.

Torque

Torque means "twisting force", and we introduce it in three steps
going from the concrete to the more abstract, as follows.

Step 1 Imagine using a spanner to tighten a nut X by pushing down
with a force at the point A .

distance

Nl



Define:
torque about X = distance x force

Notice that the greater the force the greater the torque, and the greater
the leverage the greater the torque. Define the torque-axis to be the
direction in which the nut will move, which is perpendicular to the paper
away from you. Here we are assuming that the nut has a right-hand
thread, and so this is called the right-hand screw rule.

Step 2 Imagine using a double spanner to tighten the nut, by pushing
down at A with force F and up at B with an equal and opposite force.

Then
torque about X = aF + bF = (a + b)F = dF .
Notice that the torque dF does not depend upon the position of X , and

so in this case (of equal and opposite forces) we can omit the words
"about X".

Step 3 Forget about spanners. Given two equal and opposite forces F

whose lines of action are a distance d apart, define

distance x force F
dr.

torque

To find the direction of the torque axis,
first identify the plane containing the F
two forces (here the plane of the paper),

. then take a line perpendicular to that

plane, and finally choose the direction along that line given by the right
hand screw rule (namely the direction in which a nut or a corkscrew
would move if the torque were applied to it). This procedure for finding



the direction of the torque axis is quite important because in applications
you will be having to think in three dimensions, which can be confusing if
you are not careful.

Summarising, torque is a vector because it has both size
(distance x force) and direction (the torque axis).

Spin

The spin of a wheel or gyro is measured in revolutions per second.
The spin axis points along the axis of the wheel in the direction given by
the right-hand screw rule:

spin spin
axis axis <€«—————

Spin is a vector because it has both size (revs/sec) and direction (the spin
axis).

Angular momentum

Angular momentum is a vector in the same” direction as the spin
axis. To calculate the angular momentum imagine dividing the wheel into
pieces of different radius; calculate the momentum of each piece as it
spins round and round, multiply by its radius, and then add up all the
pieces. Notice that the more the mass is distributed towards the rim of
the wheel the greater the angular momentum. Intuitively angular
momentum measures the reluctance of the axis of the wheel to be
deflected (just as in linear motion the momentum of a moving object
measures its reluctance to be deflected from its path of motion). Notice
the beautiful symmetry of the spinning definitions in terms of the related
linear concepts:

torque = distance x force
‘angular momentum = distance X momentum.

We can now derive the spinning version of Newton's law by merely
replacing linear words by spinning words.

* This is true when the spin axis is along the axis of symmetry, but only approximately true
otherwise (see Appendix 1). For example one of Saturn's moons, Hyperion, is very
asymmetrical and consequently tumbles chaotically instead of spinning regularly.

N1
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Newton's law of spinning motion

New angular momentum = (old angular momentum) + (torque x time)

torque x time

old angular momentum

Here we only state the spinning law, but in Appendix 1 we show how to
prove the spinning law from the linear law. Therefore from the point of
view of developing the theory of motion Newton only needed to postulate
the linear law.

Since the torque-time vector is in the direction of the torque axis,
and the angular momentum vector is in the direction of the spin axis, we
can draw the directions of the axes as follows:

torque axis
o522

S precession
ne

old spin axis

The picture explains why precession occurs, and which way the spin axis
will precess. We can summarise it in a beautiful little gyro law, as follows.

Gyro Law
The spin axis chases the torque axis.

N1



We can now apply this to the spinning bicycle wheel hanging on a string.
string

torque
axis \ W

‘inECESSion

spin axis

weight W

The two forces acting on the wheel are the weight W downwards and the
equal and opposite pull upwards of the string. To work out the direction
of the torque axis first identify the plane containing the two forces, which
is the plane of the paper; then take a line perpendicular to the paper in
the direction given by the right-hand screw rule, which is away from you.

(This is indicated in the diagram by a line drawn parallel to an edge of the
little cube in perspective.)

By the gyro law the spin axis chases the torque axis and so begins to
precess horizontally away from you. This in turn causes the torque axis
also to rotate horizontally, always keeping 90° ahead of the spin axis. By
the gyro law the spin axis chases the torque axis round and round,
causing the steady precession.

string

torque
axis

\\ ~\\g§icession
, spin axis

_/

\

11
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Gyroscopes and Boomerangs

Worksheet 1

Try to do all these questions after you have seen the video Part 1, and
before watching Part 2, because it will make Part 2 much easier to follow.
The first question is about adding vectors. The next three questions are
about torque, to give you practice in calculating it and finding the
direction of the torque axis. The rest of the questions are about the
spinning bicycle wheel hanging on a string. The most important question
is number 8 because that gives the formula for the precession time. I
shall prove this formula in the next part of the video, and do the
experiments to test the predictions made by your calculations. So it is a
very good idea if you can do the calculations before seeing the
experiments.

1. In each case measure the lengths of the vectors A and B in
centimetres. Draw a parallelogram with sides parallel and equal to A
and B . Draw in the diagonal A+B, and measure its length.

(i) (ii)

>\

A
2. Measure XB in centimetres.

;. ©)
I

If you push down at B with force F what is the torque about X ?
The torque axis is perpendicular to the page; use the right-hand
screw rule to determine the direction of the torque axis, whether it
is towards you or away from you.

{

If you were to push down at A with force 2F would this produce a
larger or smaller torque about X ?




3. Measure the distances AX, XB and AB.

TF

(C-a X -y B -)

Calculate the torque about X when you

(i) pushup at A with force F,
(ii) push down at B with force F,
(iii) do both at once.

What is the direction of the torque-axis? Calculate the torque about
Y in each case, and verify that in case (iii) the answer is the same as
that for X.

4. In each of the four cases measure the distance between the lines of
action of the two forces, calculate the torque, and use the right-hand
screw rule to determine whether the torque axis is towards you or
away from you.

S

5. The wheel with centre of gravity G is string
hanging on a string a horizontal distance
d from G . The two forces on the wheel
are the weight W downwards at G , and WA
an equal and opposite pull upwards by the d
string. What is the torque, and in which
direction is the torque axis?

=<— [T 1- V(1]

13
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The diagram shows four positions of a spinning wheel hanging on a
string, and a horizontal circle giving the compass directions North,
South, East and West.

Use the right-hand screw rule to determine the compass directions
of the spin-axis and torque axis in each of the four positions. State
the gyro law. Which way round the horizontal circle will the spinning
wheel precess?

A wheel of radius r centimetres is spinning at s revolutions per
second. How far does a point on the rim travel

(i) in one revolution?

(ii) in one second?
What is the speed of a point in the rim in cm/sec? Calculate the
speed to the nearest cm/sec when r =24.5 and s =3.

A spinning bicycle wheel is hanging from a string

as shown. Let string
r = radius of wheel in cm
d = distance of string from wheel in cm
s = spin in revs/sec
g = gravity = 1000 cm/sec/sec d 3
t = time to precess once round in sec.
o 47212
The formula for t is given by t= =

Given that r = 24.5 calculate t to the nearest second in the three
cases:
(i) s
(ii) s
(iii) s

q
d
d

6.5
6.
15.

3,
2,
3,

If you use the more accurate figure for gravity of g = 981 cm/sec/sec
what difference would this make to your answers in Question 8?



Gyroscopes and boomerangs

Notes on the Video Part 2: The precession time

The aim of the video Part 2 is to prove the formula for the precession
time of a spinning wheel, and to do experiments to test this formula. You
will have already used the formula in Worksheet 1 Question 8 to work out
the time in three cases, and your answers will be the predictions for the
experiments.

Consider a wheel spinning with 0 fixed and spin axis horizontal:

string

d o

spin axis

¥

Let r = radius of wheel in centimetres
d = distance of string from wheel in centimetres
s = spin in revolutions per second
g = gravity in centimetres per second per second
t = time to precess once round in seconds.

Then the formula for the precession time is

. 47212
gd |

To prove the formula the first thing we need to do is to work out the
angular momentum and the torque.

Angular momentum

Let m be the mass of the wheel. There is no need to specify in what
units we are measuring the mass because m does not appear in the final
formula.  For simplicity of calculation let us assume that all the mass of
the bicycle wheel is concentrated in the rim. This is not a bad
approximation because the spokes are very light, and the hub contributes
relatively little to the angular momentum because it is so close to the axis.

The circumference of the wheel is 2nr cm. Therefore a point on the
rim travels 2nr cm in one revolution and 2nrs c¢m in one second, because
the spin is s revs/sec. Therefore the speed of the rim is 2nrs cm/sec.

15
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Therefore the momentum of the rim as it goes round and round is given

momentum = mass X speed = m X 2nrs = 2xrsm.

To obtain the angular momentum we multiply by the distance r of the
rim from the axis: '

angular momentum = distance x momentum
=TI X 2Rrsm
= 2nr2sm.

Torque

The two forces on the wheel are the weight W downwards and an
equal and opposite pull of the string upwards. It must be equal because if
it were greater then the wheel would fly upwards, and if it were less the
wheel would fall downwards. The two forces are a distance d apart, and
SO

torque = distance x weight = dW.

Weight, mass and gravity
The relationship between weight and mass is given by the formula:
weight = mass x gravity. |

In symbols
W = mg.

For example if you were on the moon your mass would be the same
but the moon's gravity is only one sixth of that on the earth, and so your
weight would be only one sixth of your weight on earth. If you were in a
space ship with the engines turned off your mass would still be the same
but there would appear to be no gravity (because the space ship would be
in free orbit with respect to the combined gravitational attractions of
earth, sun and moon) and so you would appear to have no weight.

On the earth all objects fall downwards with a constant acceleration
which is used to define the earth's gravity g . We need to express g in
terms of the same units that we have used for the other measurements,
namely centimetres and seconds, and for our calculations a sufficiently
good approximation will be g = 1000 cm/sec/sec. A more accurate
estimate would be g = 981 cm/sec/sec, but there is no point in using the
greater accuracy since the other measurements are only accurate to
within about 10%, and so it would not affect the predictions (see
Worksheet 1 Question 9). Substituting W = mg in the expression for

- torque gives:

torque = dW = dmg.



Proof of the Formula

Start with Newton's law for spinning motion, looking down on the
wheel from above:

\torque x time

old angular momentum

The torque, however, is not in a constant direction because it precesses
at the same rate as the spin axis, always keeping 90° ahead. Therefore
the right-angle triangle becomes a sector of a circle, with the torque-time
path becoming an arc of the circle, always at right-angles to the radius,
which represents the angular momentum.

torque x time

0old angular momentum

In time t the spin axis precesses round a whole circle.

torque x t

angular
momentum

Since the circumference of a circle is 2rn times the radius

torque X t = 27 (angular momentum).

17
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Therefore
¢ — 2 (angular momentum)
torque
27 (27r? sm) L .
e T substituting the expressions for angular momentum and torque
g .
A?r?
= dr > , by cancelling m from top and bottom .
g

This completes the proof of the formula for t .

In Worksheet 1 Question 8 and in the experiments in the video
Part 2 the values used were: r=245 , g=1000.

experiment | 1st | 2nd | 3rd

d 6.5 | 6.5 | 15

Hence t 11 7 5

Notice that the slower the spin the shorter the time because s is on the
top of the formula, hence the faster the precession. Similarly the larger
the distance the shorter the time and the faster the precession, because
d is on the bottom of the formula.

If a gyro is freely suspended on
gimbals as shown, then no torque can be
applied to its axis however much the
stand is moved around, and so there will (
be no precession. Therefore the spin
axis will maintain a fixed direction in
space, and can be used as the basis for a
navigation system.

I
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Gyroscopes and boomerangs

Worksheet 2

Do these questions after you have seen the video Part 2 and before

watching Part 3. The first three questions are to introduce you to sin 0,
in case you have not yet done any trigonometry. The next two questions
are about spinning the wheel at an angle, to show that it does not make
any difference to the precession time, as you saw at the end of the video
Part 2. The last three questions are about a spinning top, and these are
the most important questions to try before watching Part 3 of the video,
because there you will see the top in slow motion doing what you have
predicted. You will also see an animated version of the explanation,
which will be much easier to follow if you have already thought about it
beforehand.

1. Here are three similar right-angle triangles

Measure 0 , and use a calculator to find cos 6 and sin 6 . Measure
the sides and verify that

2. In each of the following right-angle triangles measure r and 0,
calculate rsin® , and verify that this is equal to the length of the side
marked rsin® .

r sin®

r sin®

W2
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Two equal and opposite forces F are
applied to the ends of a bar of length d at
an angle 6 . Write down the distance
between the lines of action of the two

forces, and the torque, in terms of d, ©

and F. Measure d and 6 , calculate the
distance between the lines of action of the
forces, and verify that you are correct by
measuring it.

A spinning wheel is hanging from a string with its axis at an angle 0
to the vertical.

string

spin
axis

Show that the torque T = Tysin6 , where T, denotes the torque

when the spin axis is horizontal. What is the direction of the torque
axis? Deduce that the spin axis precesses in a cone at a constant

angle 0 to the vertical.

string

precession

spin axis




Let A denote the angular momentum in Question 4. Show that
Newton's law gives a cone with side A and circumference Txt ,

where t is the time to precess once round.
N

A

2wAsin@  2mA

Show that t = T T y

Deduce that the precession time t is independent of 6 .

Suppose a top is spinning on a table with its axis inclined at an angle

0 to the vertical as shown.
////spin axis

G

9/a

ool S PSS S S

Ignoring friction, there are two forces acting on the top, the weight
W downwards at the centre of gravity G and an equal and opposite
upthrust at the point P in contact with the table. Since the forces
are equal and opposite G remains stationary (for a proof see
Appendix 1 Example 3). Let d be the distance from G to the tip.

Show that the torque = Wdsin® , approximately (only approximately
because P is not quite at the tip).

precession

What is the direction of the torque
axis? Let S be a point on the spin
axis. Show by the gyro law that S
precesses in a horizontal circle with
centre vertically above G .

Deduce that P precesses in a circle
with centre vertically below G , and
that the spin axis precesses in a
double cone with vertex G , at

constant angle 6 to the vertical.

spin axis

precession

21
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Now take friction into account as follows. The diagram shows an
enlargement of the tip of the top with the point P a small distance

from the spin axis.
/ spin axis

S

P~

LV PRSI AALLLS I

Let r = distance of P from the spin axis
s = spin in revolutions per second
vy = speed of P moving away from you due to the spin.

Show that v; = 2ars.

Let R = radius of the precession circle of P
p = rate of precession of P round this circle in revolutions per
second. '
vy = speed of P moving towards you due to the precession.

Show that vg = 2nRp.

Let v =vy-vo
= net speed of P moving away from you.

Since s is much larger than p, but r is much smaller than R, itis
not clear at first sight which of v; or vy will be the larger. Explain
why the faster the spin the slower the precession. Deduce that if the
top is spun sufficiently fast then v > O . Therefore P is sliding on
the table away from you, and friction causes an opposing force F
towards you. The force F causes a second torque about G (in
addition to the first torque described in Question 6). What is the size
of this second torque about G ? [Hint: imagine using a spanner to
tighten a nut at G, and pushing on the spanner with force F at P .]




spirals up

second
torque
axis

Verify that the second torque axis is in the plane of the paper
perpendicular to the spin axis (approximately), and in the upwards
direction. Deduce by the gyro law that the spin axis will rise, at the
same time as precessing, and hence will spiral towards the vertical.
When the spin axis becomes vertical it is called a sleeping top.

[Remark: this is the only example in the book of a torque arising
from a single force rather than from a pair of equal and opposite
forces, and that is why we are careful to add the words "about G". For
a proof of the gyro law in this case see Appendix 1 Theorem 3.]

What happens when the top slows down?

23
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Gyroscopes and boomerangs

Notes on the Video Part 3: Tops, eggs and boomerangs

Tops going to sleep and waking up

People have played with tops ever since there have been flat surfaces
on which to spin them. The sleeping top is particularly fascinating, and
is often used as a metaphor for the paradox of stillness within motion.
For example I once asked a Japanese Buddhist mathematician in Kyoto
what he meant by "emptying his mind" because emptying the mind is
common practice amongst meditative religions like Buddhism, and he
replied that it was a "dynamic emptiness" like being at the still centre of
a sleeping top, ready to resonate with faint echoes deep inside himself
that were normally inaccessible to him.

A description of why a spinning top rises and goes to sleep was given
in Worksheet 2 Questions 6 and 7. Here, continuing with the same
notation as in those two questions, we answer Question 8 and describe
what happens when the top slows down and wakes up.

spirals out

spin axis

second torque axis
reverses direction

P

As the spin s decreases due to friction the angular momentum decreases,
and so the precession time decreases (as can be seen from the formula
for the precession time in Worksheet 2 Question 5). Therefore the rate
of precession p increases. Eventually the speed v; of P away from you
due to the spin falls below the speed vy towards you due to precession.
Therefore the net speed v = v;-v9 changes sign from positive to negative.
Therefore the direction of sliding of P on the table is reversed, the
friction F is reversed, and so the direction of the second torque axis is
reversed, as shown in the diagram above. By the gyro law the spin axis
will now chase it downwards instead of upwards. Therefore the spin axis
suddenly begins to spiral outwards until it reaches an angle where v; =vy

~ temporarily, and so v = 0. Therefore the top begins to roll instead of

sliding, and to precess at a constant angle to the vertical. Since the
rolling makes quite a loud noise the sleeping top is said to have "woken
up". After a few moments the sliding begins again with v<0, and so then
the top topples right over.



Spinning eggs standing on end

To get a spinning egg to stand on end it has to be hard-boiled, or
made of some solid material like wood or marble so that it behaves as a
rigid body. Otherwise if you try and spin an uncooked egg you will find
that the liquid inside lags behind and causes the shell to slow down again
almost at once, so that you can never get it to spin fast enough to rise up
on end. The liquid inside will indeed be rotating, but only very slowly,
and you can verify this by momentarily stopping the egg and immediately
letting it go again: this will not stop the liquid inside, and so it will cause
the shell to start rotating again slowly as soon as you let go.

If you spin a hardboiled egg fast enough then it will rise up and spin
standing on end. At first sight this looks like a top going to sleep, but in
fact the explanation turns out to be quite a bit harder. This is because
when you spin an egg you don't spin it about its axis of symmetry as you
do with wheels and tops, but rather you spin that axis of symmetry about
the vertical.

C > spin

S S S S
In other words the axis of symmetry has fast precession rather than the
slow precession that we have been studying in wheels and tops. As a
result the motion cannot be explained in terms of elementary

mathematics like the other experiments in the video, but needs a more
sophisticated treatment, which is given in Appendix 2.

axis of symmetry

Boomerangs

Boomerangs are even older than tops. The Australian Aborigines are
the most famous world experts, and indeed the name boomerang comes
from their language, but boomerangs were also invented independently in
several other parts of the world. For example a 5000 year old boomerang
was found in a bog in Denmark, a 7000 year old one was recently found in
a cave in Poland, and when archaeologists opened Tutankhamun's tomb in
Egypt they found amongst the treasures three ivory boomerangs with gold
tips. The gold tips may have been functional as well as decorative by
increasing the range of flight.

The great thing about a boomerang is that it flies in a circle and
returns to you so that you can catch it. It achieves this by being both an
aircraft and a gyro: being an aircraft enables it to fly, and being a gyro
~ enables it to steer itself round the circle.
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The traditionally shaped boomerang
has two blades as shown, but boomerangs
can also be made in large variety of other
shapes including V, X, S, *. The one
thrown in the video was cross-shaped
with four blades, and instructions on how
to make one like that are given in
Worksheet 3 Question 5.

In cross-section each blade is shaped aerodynamically like an
aeroplane wing, so that as it moves through the air it generates lift; in
other words the air exerts a force on the blade perpendicular to the
blade.

lift

streamlines
of the
A1TTIOW cvvve v om e et s e s e

of the blade

What actually causes the lift is the curvature of the upper surface of
the blade, which induces the air to flow faster at a lower pressure over
that surface; therefore there is less air pressure pushing down on the
upper surface than there is pushing up on the lower surface, the
difference giving the lift. In an aeroplane the wing is horizontal so that
the lift is upwards, thus counteracting gravity and enabling the aeroplane
to fly. A boomerang, however, is thrown forwards in a vertical plane and
so the lift acts sideways.

lift <

trailing
axis

forward
velocity

lift <—

12

If you are right-handed hold the boomerang with the curved surface next
to your face, so the lift will be to the left and the boomerang will fly in a
circle to the left. A left-handed thrower needs a left-handed boomerang
in which everything is reversed.

—*' 5 forward velocity



Any object moving steadily round a circle has an acceleration towards
the centre of that circle and therefore requires a force towards the
centre to produce that acceleration (see Worksheet 4 Question 3 and
Appendix 1 Example 2). In the case of the boomerang this force is
provided by the lift. In Worksheet 4 Question 4 the lift is calculated, and
it is shown that the radius R of the flight circle is built into the
boomerang, independent of the speed and the spin with which it is

thrown. Let Q; denote the rate of turning round the flight circle in
radians per second, which is determined by the speed since R is fixed.

We next turn our attention to the gyroscopic effect. For a right-
handed thrower the spin axis is horizontal and to the left. Now the upper
blade is moving much faster through the air than the lower blade because
for the upper blade the spin is added to the forward speed of the
boomerang, whereas for the lower blade the spin is subtracted from the
forward speed of the boomerang. Since the lift depends upon the square
of the speed through the air the upper blade generates much more lift
than the lower blade. Therefore the air exerts a torque on the
boomerang as well as a force. By the right-hand screw rule the torque
axis points backwards in the direction of the trailing axis (that is the
opposite direction to the forward velocity). By the gyro law the spin axis
will chase the torque axis and cause the boomerang to precess to the left.

spin torque
axis axis

Let Qo denote the rate of precession in radians per second. The secret
of the boomerang and the basic reason why it works is that

Q1=£22 .

In other words the boomerang steers itself around the flight circle at
exactly the right rate, so that its plane is always tangent to the circle, and
the lift is always pointing towards the centre of the circle. Otherwise if it
were to precess too quickly or too slowly then it would rapidly stall and

lose its ability to fly. The magic formula Q) = Qg is proved in
Worksheet 4 Question 4.

So far we have ignored gravity. As the boomerang travels round its
- flight circle, it begins to fall downwards at the same time. Therefore the
direction of the forward velocity begins to point slightly downwards, and
so the trailing axis, and hence also the torque axis, begin to point slightly
upwards. By the gyro law the spin axis chases it upwards and so the
boomerang begins to "lay flat". By the time it returns to the thrower it
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should be spinning horizontally, and the forward speed will have dropped
due to drag, and so you can catch it by clapping it between your flat
hands.

The process of a boomerang laying flat is a bit like a top going to
sleep, although this analogy is not very good because the underlying
mathematics is quite different. A better analogy is as follows. The
argument about the boomerang flying in a circle of radius R was
independent of the original direction in which it was thrown, because
gravity was not involved. Therefore, in whatever direction it is thrown, it
will begin to fly on the surface of a huge imaginary sphere of radius R .
Therefore it will behave like a marble rolling inside a hemispherical bowl.
Just as the marble is subject to gravity and friction, and after following
some path on the surface of the bowl will eventually settle down at the
bottom of the bowl, so the boomerang will be subject to gravity and drag,
and after following some path on its huge imaginary sphere should
eventually settle down spinning horizontally at the bottom of its sphere,
and then gently drift to earth.

You can experiment by projecting a marble on the inside surface of a
bowl from various points and in various different directions, and watching
the path that it then takes to the bottom. This will give you a prediction
of how your boomerang will behave if you throw it at different angles
above the horizontal, with its plane at different inclinations to the
vertical.

Recommended further reading

1. M.J. Hanson, The boomerang book, Puffin Books (Penguin Books),
Harmondsworth, Middlesex, 1974.

2. J. Jennings and N.H. Hardy, The booinerang and its flights, World
Wide Magazine, London, 2 (1898) 626-629.

3. J. Perry, Spinning Tops and gyroscopic motion, 1916 (reprinted
Dover Publications, 1957).




Gyroscopes and boomerangs

Worksheet 3

Worksheets 3 and 4 are for you to try after you have finished
watching the video, to help reinforce some of the ideas. Worksheet 3 is
the easier, and Worksheet 4 is the harder because some of the
mathematics in it is a little more advanced.

In Worksheet 3 the first question explains the first experiment in
the video, the bizarre behaviour of a spinning wheel if you try and move
its axis the wrong way. The next three questions are about astronomical
gyros, the earth, the moon, and a spaceship. The last question is a
practical exercise on how to make your own boomerang.

1. Imagine holding a spinning wheel and trying to rotate the spin axis
in a cone as shown.

D
s> )
Lt anti
: rotate

Easy ‘ Hard

Explain why rotating it the same way as the spin axis is easy, but
rotating it the opposite way is hard. Predict what will happen when
you try and rotate it the opposite way. Then get a hold of a bicycle
wheel and test your predictions.

2. Let S denote the spin axis of the earth, and let E be the axis
perpendicular to the plane of the earth's orbit.

E

precession

North pole
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Centrifugal force makes the earth fatter at the equator than at the
poles and so it is like a sphere with an extra band round the equator.
The sun exerts a torque on this band because it attracts the nearer
part more, and the further part less than the rest of the earth, as
shown. Which direction is the torque axis? Deduce that S precesses
westwards in a cone around E at a constant angle to E, as shown.
[Note: the angle is 23.5° and it takes 45,000 years to go once round.]

Let M and E be axes perpendicular to the planes of the moon's orbit
and the earth's orbit.

E
precession M
Sun
< Y
<::Zi:\~;::E>Moon = 2
N ’,I\\

Earth

If we represent the average position of the moon by a ring spread
evenly round its orbit then this ring acts as a gyro, as the earth did in
the last question. Deduce that M precesses westwards in a cone
around E at a constant angle to E. [Note: the angle is 5° and it takes
18.6 years to go once round. One can prove by calculating the
angular momentum and average torque that if the angle is small then
the precession time is 4/3 times the number of months in a year,
approximately. This result is independent of the masses of the sun,
earth and moon and the radii of their orbits, and so also works for
the moons of Saturn & Jupiter.]

A space ship with centre of mass G and command satellite S is
floating freely in space. It then squirts equal and opposite jets from
the points shown, and in the directions shown, in order to start
rotating.

jet

jet

Which way does it begin to rotate, and about which point does it
rotate?




How to make a boomerang

Get some balsa wood about 2 millimetres thick. Cut out two pieces,
each about 30 cm long and 3 cm wide. Round the ends with

sandpaper. Mark the top of each piece into two blades leaving 3 cm
in the middle.

“«—3—
back front

S B

o

—w—>

front back
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The front of each blade is identified by imagining rotating the piece
anti-clockwise if you are right-handed, and clockwise if you are left-
handed. The diagram is for a right-handed boomerang. Draw a line
along each blade one third from the front. Sandpaper the top of each
blade until it has cross-section like an aeroplane wing, rounded at
the front, thickest where you drew the line, and streamlined at the
back.

thickest
! rounded

. e
tteamll“ed
back = front

It will improve the flight if you can bend up the ends a little.

top

This can be done provided you are VERY CAREFUL NOT TO BURN
YOURSELF by steaming the underside for a few seconds while
holding it gently bent. I strongly recommend wearing gloves and
getting an adult to help you. Finally put the two pieces together in
the shape of a cross, and hold them together with an elastic band
going over one piece and under the other.
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Your boomerang is now ready to fly. When you throw it hold it
vertically as described in Notes 3, and give it a good flick as it leaves
your hand so that it starts spinning fast, and goes off in a direction
about 10° above the horizontal. When it returns catch it by clapping
it between your flat hands.

A balsa wood boomerang flies best in a large hall where there are no
air currents and no breakable objects, and preferably no other people
until you get skilled, although the balsa wood is so light that it is
unlikely to hurt anyone if it hits them. If you throw a balsa wood
boomerang out of doors the wind .is liable to catch it and blow it all
over the sky.

For outdoor throwing it is better to make a traditional shaped
boomerang out of plywood because being heavier it will have a much

larger flight circle and be less affected by the wind.

Use plywood about 6 mm thick. Each blade should be about 30 cm
long and about 4-5 cm wide, and the angle between the blades about
1200. Use the same method of marking and shaping the blades,
except that with plywood it is quicker to use a spokeshave to do
most of the shaping and just use sandpaper for the final smooth
finishing.

When throwing a plywood boomerang choose a still day and stand in
the middle of a very large field with no other people around.
Although a plywood boomerang only weighs about 100 grams it can
nevertheless cause a serious injury if it hits you on return, so watch it
like a hawk, and if anybody else is there insist that they watch it too.
Throw it about 45° to the right of the direction from which the wind
is blowing, and if you want to catch it wear gloves.




Gyroscopes and boomerangs

Worksheet 4

The purpose of Worksheet 4 is to prove the magic formula for
boomerangs, Q; =Q, . This will require slightly more advanced
mathematics than the previous worksheets, and the first three questions
are designed to help towards it. Question 1 calculates the average values
of cos ® and cos2? 6 , and Question 2 verifies these results graphically.
Question 3 calculates the acceleration of an object moving steadily round
a circle. In the proof of the magic formula in Question 4 you need to
calculate the lift, torque and angular momentum of a boomerang, which
involves integrating along the blades. For this you need to use the two
integrals

b b 1
jodr =b, joﬁdr = §b3.

Apart from that the proof is just a long sequence of elementary steps.

1. The unit circle has centre the origin O and radius 1. Let P be a point

on the unit circle with cartesian coordinates x,y and polar coordinate
0. Express x and y in terms of 6.

If P goes steadily round the unit circle then by symmetry the average
value of x is zero. Deduce that the average value of cos8 is zero.

Let Q be the position of P when 6 = O.
Let R be the foot of the perpendicular from Q to OP.
Let S be the foot of the perpendicular from R to OQ.

Prove that
OS = cos260.
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Prove that R lies on the circle diameter OQ. Let C be the centre of

this circle. Prove that the angle QCR = 26. Deduce that if P goes
steadily round the unit circle then R will go steadily twice round the

smaller circle. Deduce that the average value of cos20 is 1/2. Find
the average values of sin6, sin26, and cossin®.

Use a hand calculator to find cos6 , correct to two decimal places.,

for 6 = 09, 159, 30°, 45°, 609, ..., 360°. Draw the graph of cosf by
marking these points on graph paper and joining them up with a
smooth curve. Verify that the average value of cosf is zero.

Do the same for cos26 , and verify that its average value is 1/2.

Suppose a mass m is moving with

speed v in a circle with centre O and

radius r. Show that it has

acceleration v2/r towards O, and will

require a force of mv2/r towards O

to ensure that it goes round the ' v
circle.

The purpose of this question is to prove the secret of the boomerang,
that the rate of turning equals the rate of precession. Let

mass
centre of gravity

number of blades

length of each blade

a point on a blade

GP

forward speed

spin in radians/sec
aerodynamic factor

total lift

total torque about G
angular momentum about G
radius of flight

rate of turning round the flight circle in radians/sec
rate of precession in radians/sec.

L | | | 1 I | B [
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The speed of P relative to G is sr at

right-angles to the blade. Let 0 = angle
between the directions of v and sr, as
shown. Prove that

(speed of P)2 = v2 + s2r2 + 2vsrcosf.

Let B be the name of a small piece of F
the blade at P of length 8 running from ¢
r to r+d . Since the total length of all

the blades is nb , and since the

aerodynamic factor is proportional to the
length, deduce that

aerodynamic factor of B = l—b6 .
n

The significance of the aerodynamic factor is that it is a constant,
depending only upon the aerodynamic shape of the blade, that
enables one to calculate the lift generated by that blade according to
the formula:

lift = (speed).2 x (aerodynamic factor).

The direction of the lift is perpendicular to the blade, and if the side
of the boomerang facing you is flat while the other side is curved
then the dirction of lift will be away from you. Deduce that B
generates lift equal to '

(v2 + s2r2 + 2vsrcosb) /1—5 .
n

Use Question 1 to show that the average lift generated by B as the
blade goes round is

(v2 + s2r2) 49 .
nb

The total lift L is given by integrating along the blade and

multiplying by the number of blades. More precisely replace & by
dr , and write the integral as

. L=n_[bo (v2 + szf)i%dr.

Prove by evaluating the integral that

L=AV1+ l(ﬁ)z
3\v )
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Assume that when the boomerang leaves the hand the forward speed
of the end of the blade which was being held by the hand is 2v/3.
Note: this can be shown experimentally by high speed time-lapse
photography, as illustrated in the diagram, where t denotes the time
lapse between two photos.

2
Calculate %(5}3) , and deduce that initially L = Av2 , approximately.
A\

Since the boomerang is flying in a circle of radius R at speed v its
acceleration towards the centre of the circle is v2/R (see Question 3)
and therefore by Newton's Law the lift required to produce that
acceleration is '

2 v
e 2B
R
Deduce that
R=2
A

In other words the radius of flight is automatically built into the
boomerang. The heavier it is the larger will be the flight circle, so to
make a boomerang that will fly in a small circle inside a room use
very light material like balsa wood. And the more aerodynamically
efficient it is the larger A will be, and the smaller will be the flight
cirele.

In time t the boomerang will fly a distance vt , and turn through an
angle vt/R radians. Therefore its rate of turning is

Q = % radians per second.
Deduce - vt
Ql = ﬂ ) vt/R
m R




The next task is to compute the torque.

trailing axis

Show that the lift generated by B causes a torque Tg about G in
the direction shown in the diagram, and given by

T = r(v2 + s + 2VSICOSQ)§’§.
n

The component of Ty in the direction of the trailing axis (that is in

the opposite direction to v) is Tgcos6 . Deduce that this component
is: ‘

Tpeos® = r((v? + s’r*)cos6 + 2vsrcos’ 6)—}'—:
n
Use Question 1 to show that the average of this component as the
blade goes round is:

vsre S
nb

Verify that the average component of Tg perpendicular to the trailing

axis is zero. The total torque T about G is given by integrating along
the blade and multiplying by the number of blades,

b Vsl
T = n_[:o -

dr .

in the direction of the trailing axis. Deduce that

T= lvsbz/l ;
3
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The next job is to calculate the angular momentum. Show that the
mass of B is

md
nb
Deduce that the angular momentum of B about G is

mod
IX — XSr
nb

perpendicular to the paper in the ' s
B %
T ST

direction away from you. The total
angular momentum A about G is
given by integrating along the blade
and multiplying by the number of

blades,
b
A=n s G
=0 nb
Deduce that
1 12
A= é'me 3 Tt
By Newton's law of spinning motion gofking
the change in angular momentum in .
time t will be Tt; and so the above
boomerang will have precessed
through an angle of Tt/A radians. AA
Therefore the rate of precession Qo
is given by
Tt
T . A
Q, = — radians/sec.
A
Deduce that
trailing axis Y
vA
Q = m boomerang

Therefore Q; = Qo, as required, and so the boomerang steers itself
round the circle at exactly the right rate.




Note that this equation only holds for the first part of the flight while
the forward speed v is greater than the rotational speed sb of the
blade tips. During the flight the speed v will decrease due to the
drag of the air on the blades. The spin s, however, will not decrease,
because as long as v > sb the lower blade will be going "backwards"
through the air from the point of view of its aerodynamic shape, and

therefore the drag on it will roughly balance the drag on the upper

blade so that neither drag will affect the spin. That is why a
boomerang maintains its spin. Eventually the speed v will become

small, and so T, Q; and Qg will become small since they are

proportional to v, but L will not become small because the other
term that we previously ignored will become dominant:

L= l),szb2 .
3

By this time the boomerang will be spinning horizontally, and the lift
L will no longer be playing the role of providing the acceleration
towards the centre of the flight circle, but instead will take on the
role of counteracting gravity, enabling the boomerang to float gently
downward rather than fall to earth.

Recommended further reading

F. Hess, The aerodynamics of boomerangs, Scientific American 219

(November 1968) 124-136.
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Appendix 1

On Newton's Law of Motion

The aim of this appendix is to show that Newton's law for linear
motion implies that for spinning motion. We shall introduce just enough
calculus and vector products to do this rigorously. Do not worry if you
have not done any calculus before because the introduction is self-
contained and geometrical, giving both intuition and motivation. But first
we need to verify that our version of Newton's law of linear motion is
equivalent to the more familiar version involving acceleration.

Definition
Acceleration = rate of change of velocity.
Newton's Law
Mass x acceleration = force. (*)
t Lemma 1

If the acceleration is constant then (*) is equivalent to the version of
Newton's law of linear motion used in the video and Notes 1.

Proof

Since acceleration is constant it can be written:

change in velocity |
time

Acceleration =

.. acceleration x time

change in velocity
= new velocity - old velocity.

~. force x time = mass x acceleration x time, by (*)
= mass x (new velocity - old velocity)

= new momentum - old momentum.

. new momentum (old momentum) + (force x time),

which is the version used in the video and Notes 1.

T A "lemma" is a little theorem.



Notation

If the acceleration is not constant then to define it precisely we need
to introduce calculus and take limits. That is why Newton invented
calculus. We shall also switch into using symbols rather than words
because they are more efficient, and hence easier to understand. Recall
that a vector has both size and direction, whereas a scalar only has size.
Throughout the two Appendices we shall use heavy type to denote
vectors, and ordinary type to denote scalars. For example velocity v is a
vector but mass m is a scalar. If x denotes a vector then x will denote its
size (and not its direction). For example if v is the velocity of an object
then v denotes its speed.

Definition

Suppose x is a vector that is varying with time, and suppose x
changes to x' after time t. Define the rate of change x of x by:

% = limit ¥ - X ast — O.
t

We also call x the derivative of x, and call the process of going from x to x
differentiating with respect to t.

Suppose now that x denotes the position
of a mass m relative to a fixed origin O, in
other words x is the vector Om. Then

position of m
velocity of m = rate of change of position

x
x
X = acceleration of m = rate of change of velocity. 0

i mu

If m is subjected to a force F (which may also depend on time) we can
write Newton's Law in symbols:

mx =F,
Example 1

The weight W of m is the force downwards on m due to the earth's
gravitational attraction g, and is proportional to m namely W = mg. By
Newton's law the weight causes an acceleration mk = W. Therefore x= g,
and so the acceleration downwards due to gravity is constant and the
same for all objects.

Example 2

If a particle of mass m is moving with speed v in a circle of radius r
~ and centre O then it has an acceleration v2/r towards O, and will require
a force of mv2/r towards O to ensure that it goes round the circle.
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Proof

By definition of derivative

acceleration = limit ¥'-V  ast— O.
t

Here v is the old velocity and v' the new velocity after time t, both having
the same size v but in different directions. In time t the particle will
have travelled round the circle a distance vt, and therefore the velocity
will have changed direction through an angle of vt/r radians.

old velocity Vv

Therefore the vector v'-v is approximated by a circular arc of length
v2t/r , and is approximately parallel to mO. Therefore

1
V'Vhas

{ size approximately v2/r
t

direction approximately towards O.

As t — O the size approaches v2/r and the direction approaches the
direction towards O. Therefore in the limit

size exactly equal to v2/r
the acceleration has{
direction exactly towards O.

By Newton's law,

force = mass x acceleration = mv2/r.

-
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Lemma 2

If m is constant and x is a vector varying with time then

(mx)" = mx.
Proof

Suppose x changes to x' after time t.

Then (mx)°

limit [m_x_rnx]
t
limit m [x'_—x]
t
m limit[x' - x] , since m is constant,

t
mx.

Lemma 3
If x,y are two vectors varying with time then
X+y)=x+Yy.

In other words the derivative of the sum is the sum of the derivatives,
and this is also true for the sum of any number of vectors.

Proof

Suppose x,y change to x',y' after time t. Then

(x+y) = limit [(X' +y) - (x + y)]
t
- limit[fx' - %) + (v - y)]
t
= hmit[z'_-_&] + limit [y'_z]
t t
=X+y
Solid Bodies

Suppose that a body is made up of particles (or atoms) which are
labelled my, my, ..., m,. Here m; denotes both the name and the mass of

the ith particle. The order in which they are labelled does not matter.
The total mass m of the body is

m=2rni
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where ), denotes the sum over alli, 1 <i < n. It is easiest to think of a

rigid body, but it does not necessarily have to be rigid because it could
be a swirling mass of liquid or a cloud of
gas like the sun. Let x; denote the position

of m; relative to a fixed origin O. The

position x of the centre of gravity G is
defined by the equation

mx = ) m;X;

Differentiating twice and using Lemmas 2
and 3 gives:

mx = (mx)" = (Zmixi)" = Zmiii

Suppose that the body is now subjected to external forces F; at m,;.
For example the forces may include gravity acting on each m; as well as

other external forces acting at particular points of the body. Define the
total force acting on the body to be

F=2Fi.

It may seem a peculiar thing to do at first sight to add together all the
forces, ignoring the points where each is acting, but the definition is
justified by the following theorem. -

Theorem 1

mx = F. In other words the centre of gravity G moves as if all the
forces were acting together at G.

Proof

As well as the external forces thére will also be internal forces

between the particles keeping the body together. Let Fy denote the

force exerted on m; by my, where i # j. We shall assume that Fy acts
along the line mym,, either towards my (attraction) or away from m;
(repulsion). We also assume that

Fl_] = -Fji
In other words each pair of particles either attract each other with equal
and opposite forces, or repel each other with equal and opposite forces.

Newton summarised it as "action and reaction are equal and opposite".

attraction repulsion
L > = D < — o—
m; Fj; Fj mj Fy mj ' mj Fj;



Apply Newton's law to my;:

Fi+ ZFI_]

i

m;X;

Sum over i

Emiiii ZFi-l' zFi_]
i 1 y

Now ., m¥; = mX, as shown above.
Z F; = F, the total force.

z Fij =0, because Fij + Fji = 0 for each pair i ¢j-
ij

Therefore mx = F, as required.
Example 3

If a body is subjected to equal and
opposite forces then the total force will be
zero (although the torque will not be zero if
the forces are not in the same line).
Therefore the centre of gravity G will have
zero acceleration. Therefore if G is still F
initially then it will remain still.

Example 4

If a spinning bicycle wheel is hung from a string as in the video then
it will precess slowly round, and G will move slowly round a circle.
Therefore by Example 2 and Theorem 1 there must be a small total force
towards the centre of the circle. Therefore our pictures and calculations
in Notes 1 and 2 and Worksheet 1 are not strictly accurate, because in
those we mentioned only the torque. However, we shall now calculate
the correction and show it is so small that it can be ignored.

What actually happens is that the string hangs at a slight angle, as is
shown exaggerated in the diagram on the next page.
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The pull of the string is the sum of a

force W upwards equal and opposite to string
the weight of the wheel, and a small '
horizontal force F = mv2/d, where m is wheel
the mass of the wheel, v the speed of G, W —
and d the distance of G from the string. \
Using the notation and measurements of :

>

N

Notes 2, d
F= G o
2nd  d%g —
V= — = —
t 2nr2s
F = my? : md3g?
d  4n24s2 l
F d3
— =S5 _ 0.002 W
w 4m2r4s?

Therefore the angle of the string to the vertical is only one tenth of a
degree, small enough to be ignored.

Example 5

In a spinning top without friction there are only two forces, the
weight (which by Theorem 1 is equivalent to a single force W at the
centre of gravity G) and an equal and opposite upthrust of the table at the
point of contact P, forming a torque. Therefore the total force is zero.
Therefore G is still, and the spin axis precesses in a cone around the
vertical through G, keeping a constant angle to the vertical.

If, however, there is friction at P then the frictional force F acts
towards you in the left diagram.

spin
axis
<;\:{// Looking down from above
P P G
,
S0 e )
P F P



Therefore the total force = F. Therefore, by Example 2 and Theorem 1, if
the spin axis were to precess at a constant angle to the vertical then G
would move in a small horizontal circle centre C, where GC is parallel to
F, as shown in the middle diagram. However, F also exerts a torque about
G, as explained in Notes 2 and Theorem 3 below, which causes the spin
axis to rise and the top to go to sleep. Therefore G performs a gently
rising spiral towards its sleeping position C, as shown in the right
diagram.

Example 6

Suppose a boomerang of mass m is flying in a circle of radius R at
speed v. If the boomerang has aerodynamic factor A then, provided v is

large enough, the total lift will be approximately Av2 towards the centre
of the circle. Therefore by Example 2 and Theorem 1,

}»Vz _ 1’1’1V2
R

Therefore R = m/A, and so the radius of flight is built into the boomerang,
independent of the speed v with which it is thrown (provided v is large
enough).

Definition of vector product

To describe the spinning motion of solid bodies in general we shall
need vector products, which are defined as follows. Given two vectors x,
y let P be a parallelogram with sides x and y. Define the vector product
x Ay to be the vector of size equal to the area of P and in the direction
perpendicular to the plane containing P given by the right-hand screw
rule going from x to y by the shorter route.

Some books use the ordinary multiplication symbol x x y to indicate the
vector product, but I prefer the notation x Ay to emphasise that it is
something rather special, particularly if this is the first time you have met
it. If you want to read it (either out loud or quietly to yourself inside your
head) you can say "x cross y".
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Theorem 2
The main properties of the vector product are:
(i) XAy =-yAx)
(ii) (mx) Ay = xA(my) = m(x Ay), for any constant m.

(iii) If x is parallel to y or -y thenx Ay =O.
In particular x A x = 0.

(iv) xA(y+2)=(xAy)+ (X A2Z)
E+y)rz=EAZ)+(yAz)

(V) @AY =&AY)+EAY)

Proof

(i) Screwing from y to x is the reverse of screwing from x to y, and
therefore the direction is reversed, as in the diagram above. The size is

the same because P is unchanged. Therefore x Ay =-(y A x).

(ii) If m > O then multiplying x by m causes the area of P to be multiplied
by m, but does not reverse the direction. Therefore (mx) Ay = m(x A y).

\ P P
\ m<0

\
x AN
mx ~, 0 | 0\ } ,>
mx¥, ,/
\%
If m < O then the area of P is multiplied by (-m), and the direction of
screw from mx to y is reversed. Therefore
(mx) Ay = -(m)(x Ay) =m(x AYy).

Similarly (x A my) = m(x A y).

(iii) If x is parallel to y or -y then P collapses to a line with zero area.
Therefore x Ay =0.

(iv) We shall show that the map y — x Ay is the composition of three
maps
Yy—=>Y1—->Y2—> Y3

as follows. Let Q denote the plane through O perpendicular to x. Let yy
be the projection of y onto Q.




%'///AX

rotate Y3

Let yo = Xy, where x denotes the size of x. Finally to obtain yg rotate Q

about O through 90° in the direction of a right-hand screw about x. We
shall show that y3 = x Ay, as follows. The parallelogram P can be

regarded having base of length x and height y;. Therefore area P = xy; =
Y2=Y3 -

By construction ygis perpendicular to the plane containing x, y;, ¥y
and hence P. Finally ygis in the direction of a right-hand screw going
from x to y by the shorter route. Hence y3 = x Ay, as desired.

Now each of these maps sends parallelograms to parallelograms, and
hence preserves vector sums, as follows.
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Firstly the parallelogram with sides y, z is projected onto a second
parallelogram with sides y;, z; and

diagonal = (y + 2); = y; + 23.

The second is expanded by x into a third parallelogram with sides yo, Zo
and
diagonal = (y + z)g = ya + Zo.

Finally the third is rotated into a fourth parallelogram with sides yg, zg

and
diagonal = (y + z)3 = y3 + z3.

Ax

rotate

Q

In other words x A (y + 2) = (x AY) + (X A 2), as required.

To prove the second part:
x+y)rz=-zA(x+Yy), by,

-(z AX) - (z Ay), by the first part,

(x A2Z) + (y A2z), by (D).

(v) Suppose x, y change to x', y' after time t. Then

limit [QILAY_')_(x_AZ)] ast— 0,
t

= hnut-(z'/\v'-xz\v')+(xz\v'—x,\v)]
t

= limit LI& X)Ay) + ®A(Y - Y)l], by (iv),
t

x Ay

t t
=XAy)+ xEAy), sincelimity =y.

limit (L_X) A y’] + limit [x A(LZ)]

This completes the proof of Theorem 2.




We shall now use the vector product to define angular momentum
and torque, and to prove Theorem 3 which is Newton's law of spinning
motion for solid bodies. In order that the result be applicable to the
examples in the video of the wheel, top and boomerang we shall need to
take the origin at the centre of gravity G, even though G itself may be
moving. To emphasise this point we shall use the notation y; rather than
x; for the vector describing the position of the particle m; relative to G.
The only place where it will matter that the origin is moving is when we
have to apply Newton's law to the individual particle m;, and here we
shall take into account any acceleration that G may have and show that
because G is the centre of gravity it does not affect the result.

Angular momentum and torque for a particle
Given a particle m and a point G, let y denote the position of m

relative to G (in other words the vector going from G to m). Then y is the
velocity of m relative to G. Define the

angular momentum of m about G =y A my.
If a force F acts on m, define

torque about G =y A F.

Compare these rigorous definitions in terms of vectors with the more
elementary definitions in terms of words that were used to first
introduce the concepts in the video:

angular momentum = distance X momentum

torque = distance x force.

Angular momentum of a solid body

Suppose that a solid body consists of particles m;, 1 <i<n, and let G
denote the centre of gravity. Let y; denote the position of m; relative to

G. Then Zm,y; = 0 because G is the centre of gravity. Define the angular
momentum A of the body about G by

A = 2 yi A mi}"i.
1

The following example shows that in the special case of a spinning
bicycle wheel A agrees with the definition used in the video and Notes 2.
Example 7

A wheel of radius r and mass m, with the mass concentrated at the
rim, is spinning at s revs/sec.
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spin ¥i A myy;

axis

Each particle m; at y; on the rim will have velocity y; at nght—angles to y; .,
and speed 2nrs. Therefore

size r x 2nrsmy
¥i A myy; has {
direction parallel to the spin axis

Sumiming over i:

A =)y, Amy; =2nr2sm along the spin axis.

The torque on a solid body

If external forces F; act at y; define the total torque T about G by:

T = Zyi A Fi'

The following example shows that in the special case of two equal and
opposite forces T agrees with the definition used in the video and
Notes 1.

Example 8

Suppose a body is subjected to forces F at x and -F at y.
Write x - y = ¢ + d, where c is parallel to F and d at right-angles to F.

dAF
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Then the total torque T about G is given by:

T = (xAF)+ (yA(-F))

= (x AF)- (y AF), by Theorem 2 (ii)

= (x-y) AF, by Theorem 2 (iv)

= (c+d)AF,sincex-y=c+d

= (¢ AF)+ (d AF), by Theorem 2 (iv)

= d A F, because ¢ A F = 0 by Theorem 2 (iii)
Therefore T = dF, since d is at right-angles to F; and T is perpendicular
to the plane containing the two forces in the direction given by the right-

hand screw rule. Hence T agrees with the definition of torque given in
the video.

Example 9
In a spinning top there are three forces acting:
(i) the weight W at G,

(ii) the upthrust -W at P, the point of contact,
(iii) the friction F at P, towards you.

SIS SIS

Let p denote the vector GP, and 6 the angle between p and the vertical.
The total torque T about G is given by

T OAW)+ (P A(-W)) + (p AF).

-(p AW) + (p AF).

The first term gives the component of torque pWsin® perpendicular to
the paper away from you, which causes the precession of the spin axis
around the vertical, and the second term gives the component of torque

pF in the plane of the paper as shown, which causes the top to rise and
go to sleep.

We are now ready to prove Newton's law of spinning motion.
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Theorem 3

If a body with centre of gravity G has angular momentum A about G,
and is subjected to a total torque T about G, then A =T.

Proof

Let x be the position of G relative to some fixed origin O. Then the
position of m; relative to O is x + y;.

Therefore the acceleration of m; is X + §;, by Lemma 3. Let Fy; be the
internal force on m; exerted by m;. Apply Newton's law of linear motion
to m;: :

ml(x + yl) = Fi + Z FlJ
J

Take the vector product with y; and sum over i:

ZYi/\mii+ZYi/\mif’i=zS’i/\Fi+ §4YiAFij
1 1 1

We shall identify each of the four terms in this equation. The first term
vanishes because

Y yiAmE = (X myyy) A%, by Theorem 2 (ii) and (iv)

= 0, since » m; y; = 0.

This is the crucial place where we have used the fact that G is the centre
of gravity, and deduced that the acceleration X of G does not matter.

The second term = A because

A = (Yy;Amy) , by definition,
= Y(y; Amyyy) + (y; A m;¥;), by Theorem 2 (v),
= Yy; Amy¥;, since y; Am;y; =0 by Theorem 2 (iii).

The third term = T, by definition.
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Finally the last term vanishes because for each pair i # j
(Yi A FIJ) + (YJ A F_]l) = (Y1 A Flj) + (Y_j A (-Fl_])) " since F_]l = _Fi_]"
=(y; - ¥ AFy, by Theorem 2 (ii) and (iv),

= 0, by Theorem 2 (iii) since Fy is parallel to y; - y;.

Fjj <

Therefore A =T, as required.
Remark
Theorem 3 can be converted back into words as follows.
" torque = rate of change of angular momentum

_ change in ang. mom.
time

torque x time = change in ang. mom.
= (new ang. mom.) - (old ang. mom.)
. new ang. mom. = (old ang. mom.) + (torque X time).

This completes the proof of Newton's law of spinning motion that was
used in the video and Notes 1.
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Appendix 2

Why a spinning egg stands on end

The spinning egg is the only experiment in the video that has not yet
been dealt with in the book, and an explanation is included here for
completeness sake. I remember that in the very first lecture that I ever
attended at university, the lecturer aroused our curiosity by spinning an
egg on end and then challenged us to explain it. Much to my
disappointment it never was explained during the course, and it was not
until several years later that I eventually satisfied my curiosity. I hope
that in turn the video may have aroused your curiosity, and lest you too be
disappointed I thought I had better include an explanation, although it is
harder than the other examples.

As explained in Notes 3 the egg is not like a top because the axis of
symmetry has fast precession rather than the slow precession observed in
tops and wheels. As a result the mathematics is more sophisticated, and
this appendix will have to be addressed to the expert rather than the
beginner, because I shall assume knowledge of moving axes and
moments of inertia that one would normally get in a first or second year
university course.

Let W be the weight, and G the centre of gravity of the egg. Choose
right-handed orthogonal moving axes at G, so that axis 1 is along the axis
of symmetry of the egg (pointing upwards as shown), axis 2 is in the
vertical plane through G (pointing downwards as shown), and axis 3 is
perpendicular to this plane (pointing away from you).

axis |

l
<o Q‘/S

axis 2

A NN

—p>
d
Let © = angle between axis 1 and the vertical.
s = spin of the egg about axis 1 in radians/sec.
p = spin of the axes about the vertical in radians/sec due to the

precession of the egg.



We shall assume that s is large, and that 6 and 6 are small, but that s is
not necessarily small. We shall ignore small quantities in relation to large
quantities if they are added together.

Let Q = angular velocity of axes = (pcos@, -psin8, 8),

w = angular velocity of egg = (s, -psin6, 0),

P = point of egg in contact with the table,

r = position of P relative to G = (-x, y, 0), as shown.
Therefore

f =war = (-y,-x0,sy-pxsing)
= (0,0,v), putting v = sy-pxsin®, and ignoring small 6.

Let R = reaction of table on egg = (Wcosf,-Wsin6,F), where F is the
frictional force in the direction of axis 3 opposing the sliding of P.
Therefore

FSO0 as v20.

Let T = torque about G = r AR

(Fy, Fx, W(xsin6-ycosb))
(Fy, Fx, Wd),

where d is the horizontal distance between P and G.

Let a,b = moments of inertia of egg about axes 1,2.

Then the inertia tensor I = g g g , by symmetry.
0 0 b
Let A = ?ngular momentum of egg
; (:s,-bpsine,bé).
Therefore
A = (as,-(bpsin®)’,bf).
QAA = (0, (as—bpcose)é, (as-bpcosb)psing).

Newton's law of spinning motion with moving axes is:

A+QAA =T.
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Here the first term A is the rate of change of angular momentum relative

to the moving axes, and the second term Q A A is the rate of change due
to the movement of the axes, and so their sum gives the total rate of
change which is equal to T by Appendix I Theorem 3. Resolving along
the axes:

(1) as =Fy

(2) -(bpsiné)’ + (as-bpcosh)d = Fx

(3) b + (as-bpcos®)psind = Wd.

Ignore the small 6 in (3), giving

(4) (as-bpcosf)psind = Wd.

This can be regarded as a quadratic equation in p, with a large coefficient
of p since s is large. Therefore it has two solutions, one with p large and

the other with p small. Initially p is large but we must also consider the
case when p is small in order to ensure that the position of the egg

spinning on end, given by 6 = O, is stable with respect to both fast and
slow precessions.

Case 1: Slow precession. Assume p is small.
Ignore the very small p2 in (4), giving

wd

aspsin®

Wwd :
= — , confirming that p is small since s is large.
assmno

Ignore the small p in the definition of v, giving

vV = sy
~v >0
-~ F < 0, since F opposes the sliding of P.

Ignore the small p in (2), giving

as® = Fx.
v - FX
6_as

0 <0 sinceF<O.




Therefore 6 decreases to zero, proving that spinning on end is stable with
respect to slow precession. Note that Case 1 is the simple case, like the
sleeping top. Case 2 is the harder case.

Case 2: Fast precession

Write equation (4) as

Wwd

psing

as-bpcosf =

Ignore the last term which is small since p is large.
as-bpcosd = 0.

as
P = Lioso confirming that p is large since s is large.

vV = Sy - pxsin®

, substituting the value of p,

= sy - asxtan

S
E (by-axtan®).

We shall show in a geometric Lemma below that

axtan® > by
v <O
F > 0 since F opposes the sliding of P.

Substitute the value of p in (2), giving

-(astan®)’ Fx.
-astand - asbsec20 = Fx.

Substituting (1) gives

-Fytan® - asfsec20 = Fx
asfsec20 = -F(x+ytan6)
B e Fcos? O(x + ytan )

as
® < 0 because F > 0.

Therefore 6 decreases to zero as in the last case, even though the
direction of friction has reversed. Therefore the egg rises to spin on end,
and that position is stable with respect to both fast and slow precession.

29
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There remains to prove the geometric lemma. Let E be the ellipse
with semi-axes o, § given by

-G -n

where a > . We shall approximate the shape of the egg by the ellipsoid of
revolution given by revolving E around the x-axis.

Let P = (x,y) be a point on E, and let 6 be the angle between the normal at
P and the x-axis. Notice that the diagram is the same as that of the
spinning egg with its axis of symmetry drawn horizontal.

Lemma
axtan6 > by.

Proof

Let m be the mass of the egg. Then the moments of inertia of the
egg about the x,y axes are given by

2

8= : m[32 , b= - m(a2 + p2).

A=

b a*+p - 20 o

a - 2[32 Zﬁz ﬁZ :

If we parametrise P by x = acos¢, y = Bsing, then

2
cos X
slope of tangent = F - £ = EZ—
asin g a‘y
2
slope of normal = tanf = L3 g E g
fx a x

axtan® > by, as required.




Spinning smarties

Smarties are small ellipsoidal chocolate sweets that are not only good
to eat, but also good for spinning. If you spin a smartie horizontally about
its axis of symmetry then surprisingly it will rise up and spin on its edge.
Paradoxically as in the egg the stable and unstable positions of stat.lonary
equilibrium are reversed when spinning.

The mathematics is exactly the same as that for an egg with one
exception, as follows. A smartie is a flattened ellipsoid, whereas an egg is

an elongated ellipsoid. In other words if a denotes the length of the
semi-axis along the axis of symmetry, and B the lengths of the other two

semi-axes, then in a smartie o < 3, whereas in an egg o > B. Therefore
the inequality in the proof of the geometric lemma above is reversed,

b/a > a2/B2, and so the geometric lemma is reversed, axtan6 < by.
Therefore in Case (2) of the fast precession the direction of v is

reversed, F is reversed, and so 6 > 0. Therefore a horizontally spinning
smartie is unstable with respect to fast precession (although it remains
stable with respect to slow precession). Consequently any slight
peturbation will be automatically magnified, causing it to rise up and spin
on edge. Furthermore one can show that spinning on edge is stable
provided that the spin is sufficiently fast; when the spin slows down it

will reach a point where the smartie will suddenly topple over like a -

sleeping top waking up.

Recommended further reading
1. G.R. Fowles, Analytical mechanics, CBS College Publishing, 1986.

2. A. Gray, A treatise on gyrostatics and rotational motion, 1918
(reprinted Dover Publications, 1959).
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Gyroscopes and boomefangs

Solutions 1

ALL MEASUREMENTS IN CENTIMETRES

Sl

(i) (ii)

A+B B A+B B

=
-

% x
A=4,B=2 A+tB=3 A=4,B=2 A+B=5
XB = 7. Torque = 7F. Torque-axis away from you.
XA = 3. New torque = 3 x 2F = 6F, smaller.
AX=2,XB=5,AB="7.
(@) 2F (i) 5F (iii)) 7F. Torque axis away from you.
AY =4,YB = 3.
(i) 4F (ii) 3F (iii) 7F.
S5F away, 5F towards, 3F away, 4F towards.

dF away.

position 1 2 3 4

spinaxis | E | N | W | S N~ \ S

torque axis | N W S E

2nr cm; 2nrs cm; 2nrs cm/sec, 462 cm/sec.
11 sec, 7 sec, 5 sec.

None. It turns out that a change of 2% in g does not affect the
answer, because the calculations were only to the nearest second. It
would be misleading to make the calculations more accurate because
the other measurements are only accurate to within 10%.



Gyroscopes and boomerangs

Solutions 2

1. 0 =370 r =25, x;=2, y1 =15
I'2=3.5, X2=2.8, Y2=21
1‘3=5, X3=4:, y_3=3.

i=z£g-=—=cos?>7°, 1;5=2=—=sm37°
2.5 3.5 2.5 3.5
2. (i) 6=60°,r =4, rsind = 3.5

(ii) © =459 , r =4, rsind = 2.8

(iii) ® =300 , r =4 , rsind = 2

3. 6=300,d=4.

Distance between lines of action of forces = dsinf = 2.

Torque = (dsin®)F = 2F.

4. To =dW

T = (dsinf)W = dWsin6 = Tysin® .

The plane containing the forces is the plane of the paper and
therefore the torque axis is horizontal and perpendicular to the
paper. By the right hand screw rule it is away from you.

string

Let S be a point on the spin axis, and
let C be the point on the string at the
same height as S . By the gyro law S
begins to move horizontally away from
you at right-angles to CS . Therefore
S precesses in the horizontal circle
centre C . :
precesses in a cone at constant angle

0 to the vertical.

5. Newton's law of spinning motion gives the triangle of vectors

new angular momentum = (old angular momentum) + (torque x time).

Therefore the spin axis
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T X t

torque X time A sin®

When this triangle is modified to take account of the fact that the
torque axis is always horizontal and at right angles to the spin axis,
then the triangle becomes a sector of the surface of a cone, with
straight sides of length equal to the angular momentum A, and a
curved arc at the top of length equal to torque x time. After time t
the angular momentum vector will have rotated once round keeping

at constant angle 6 to the vertical, and will have traced out the
complete cone. The base of the cone (which is at the top because
the cone is upside down) is a circle with circumference T x t and

radius Asin®.

s Txt=2n(Asinf)
(o 2mAsin 6
T

27wAsin 0
= sing substituting T = T,sin6,

= Z%A , cancelling sin6 from top and bottom.

Therefore t is independent of 6 , because both A and T, are.

If the upthrust were at the tip, then the distance between the lines
of action of the forces would be dsin6 .

-~ torque = (dsin6)W = Wdsin® .

As in Question 4 the torque axis is horizontal, perpendicular to the
paper and away from you. As in Question 4 S precesses in a
horizontal circle with centre vertically above G. Since SGP is a
straight line, and G is stationary, P must precess in a similar circle
with centre vertically below G. Therefore the spin axis precesses in

double cone with vertex G, at constant angle 6 to the vertical.




Due to the spin P travels a distance 2xr in one revolution, and 2xrs in
one second.

s vy = 2mrs.

Due to precession P travels a distance 2nR in one circle of
precession, and 2nRp in one second.

- Vo = 21Rp.

If s increases then the angular momentum A increases, the time t to
precess once round increases because A is on top of the formula for t
(see Question 5), and hence the rate of precession p decreases.
Therefore v; increases and vy decreases until v; > vy . Therefore

if s is sufficiently large then v> 0.

The second torque GP x F, since GP is perpendicular to F,

dF, approximately.

The second torque axis is perpendicular to the plane Q containing G
and the line of action of F. Now F is perpendicular to the paper, and
so Q is also. Therefore the second torque axis lies in the. plane of the
paper. It is also perpendicular to GP since Q contains GP. Therefore
the second torque axis is perpendicular to the spin axis,
approximately. By the right-hand screw rule it points in the upwards
direction.

By the gyro law the spin axis chases the second torque axis, and
therefore moves towards the vertical. Combining this with the
precession gives an upward spiral towards the vertical. Hence the
top goes to sleep.

When the top slows down s decreases, p increases, v; drops below
vg, v changes from positive to negative, F reverses direction, the
second torque axis reverses direction, and so spin axis chases it
downwards instead of upwards. Therefore the sleeping top wakes
up, the spin axis spirals outwards until v; = v , and then the top rolls
noisily for a few moments while precessing at a constant angle to the
vertical. Finally v goes negative again and the top topples right over.
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Gyroscopes and Boomerangs

Solutions 3

1. Easy ; Hard

torque axis, T

19 .
10 a* anti
9P rotate
C —C
rotate

torque axis, T

Let S denote the spin axis, and C the axis of the cone. If you try and
rotate S around C in the same direction as the spin you will in fact be
applying a torque whose axis T is at right-angles to S and points
inwards towards C. By the gyro law S will move towards T, and
appear to be attracted towards C, thereby helping you to rotate it
around the cone.

Conversely if you try and rotate S in the opposite direction then T
will point outwards away from C. By gyro law S will move towards T
and away from the cone; it will appear to be repelled by C and will
resist going the way you want it to. If you then try and bring S back
towards the cone then you will in fact be applying a torque whose
axis points in the same direction as you were originally trying to
move S. Therefore by the gyro law S will begin to move in that
direction, and to your surprise the wheel will suddenly appear to
cooperate with you instead of resisting you, causing it to wildly
overshoot in that direction. The more you try to bring it under
control the more perverse and wild it will appear to become.

2. The plane containing the forces is the plane of the paper, and so the
torque axis is perpendicular to the paper. By the right-hand screw
rule it is towards you. Therefore S precesses in a cone around E at a
constant angle to E, similar to the cases of a wheel on a string or a
top without friction (Worksheet 2 Questions 5 and 6). The only
difference here is that the precession is in the opposite direction to
the spin.

3. Similar to the last question.
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4. The forces exerted on the space-ship are equal and opposite to the
forces that the space-ship uses to squirt out the jets.

force

ﬁtorque

force

Therefore the torque is clockwise and so the space-ship begins to
rotate clockwise. The sum of the forces is zero and so G remains
stationary (by Appendix 1 Example 3). Therefore the space-ship
rotates about G.
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Gyroscopes and Boomerangs

Solutions 4

1. x =cosb, y =sinf.
oQ =1
-~ OR = cos6 "
. OS = ORcosf = cos26.
Complete the rectangle ORQT. Let C 0 Q

be the intersection of the diagonals.
By symmetry CO = CR = CQ = CT.
Therefore the circle centre C radius T
CO goes through the four corners.
But this is the circle diameter OQ,
which therefore goes through R. '

A A
CRO = COR, since CO = CR,
= @,

A A~ A
- SCR = COR + CRO, from triangle COR,
= 20.

As P goes steadily round the larger circle, R goes steadily twice
round the smaller circle. Therefore by symmetry the average value of

OSis OC. But OC = 1/2. Therefore the average value of cos26 is 1/2.

By the symmetry of interchanging x and y the average value of sin6
is the same as that of cosf, namely zero. Similarly the average value
of sin29 is the same as that of cos26 , namely 1/2.

RS = ORsinO = cosOsind.

Hence by symmetry as R goes round the smaller circle the average
value of cosfsin® is zero.
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0 cosO®  cos26
0] 1 1

15 0.96 0.93
30 0.87 0.75
45 0.71 0.5

60 05 0251 |
75 026 007
90 0 0 . o

105 -0.26  0.07 \/ N
120 -05  0.25

135 -0.71 05 | -1 L

150 -0.87  0.75

165 -0.06  0.93

180 -1 1

195 -0.06  0.93

210 _-0.87 _0.75 | ...

525 -0.71 0.5

540 0.5 _ 025 | |

255 _-0.26___0.07 | .| "\ 7N pa
270 O 0 s

285026 __0.07 | olrrrrt Sl o
300 0.5 0.25 360°

315 0.71 0.5
330 0.87 0.75
345 0.96 0.93
360 1 1

3. In a small time t the mass will have travelled a distance vt through an
angle vt/r radians.

change in
velocity

new | S
velocity 0ld velocity, Vv

old velocity

2

Y! towards O, approximately.
r

-~ change in velocity

. : 2
acceleration = change in velocity = ¥Y° towards O.
t by
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By Newton's law of linear motion

force xt = change in momentum
= mv X }I,Tt towards O, force x t
approximately.
force = m_v towards O. old momer;:um, mv

T

4. P has components of velocity: l————> vV + srcosf

srsin®

. (speed of P)2 = (v + srcosf)2 + (srsin)2
= v2 + 2vsrcosd + s2r2cos20 + s2r2sin20

= v2 + s2r2 + 2vsrcosf, since cos26 + sin26 = 1.

Aerodynamic factor of B - length of B = B
A length of blades nb
. aerodynamic factor of B = AS .
nb

) Ao
Lift generated by B = (v2 + s2r2 + 2vsrcos6) -

n

= (v2 + s2r2) 5 + 2vsEld cosH.
nb nb

The first term is constant, and so equals its average, while the

second term has average zero because the average of cos6 is zero by
Question 1.

Lo aP(e s o)

2 2

= ol Ydr + A—S'[bxzdr
b ‘o b

_Av? As? b_3

b b 3




2v/3 = forward speed of end of lower blade = v - sb

sb=v--v=—-v
3

sb 1

v 3

.1wf_1
“3lv) 27

Ignoring 1/27 compared with 1 gives L = Av2-

But ;
- mv?
R
w2 = mv?
R
m
R = —
A
v A vA
Q= ==vVX— = — radians/sec.
R m m

Ty = distance x force

=1 x (v2 + s2r2 + 2vsrcosb) l—f )
n

. component along trailing axis

TgcosH

vsr2 A8

- average = s
nb

average of cos20 is 1/2 by Question 1.

Meanwhile the component perpendicular to the trailing axis

TBsinG

r[(v2 + s2r2)cosf + 2vsrcos20] l—f

n

because the average of cosf is zero and the

= r[(v2 + s2r2)sin® + 2vsrcosfsinb] Ao

. average 0

Il

because the average of each of sin® and cosOsin®

nb

is zero by

Question 1. Therefore the total torque T about G is in the direction

of the trailing axis, and

71
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2
T = J-bvsr ldr
0 nb
- Vysd [°r
b 7o
. wAp
b 3
_ 1 5
= —vsb*A
3
Massof B lengthof B &
m length of blades  nb
~. mass of B = mo
nb

Speed of B relative to G = sr
. mo
. momentum of B relative to G = = X ST
n
. angular momentum of B about G = r x rn_: X ST = ms§5
: . n n
2
-~ total angular momentum A = nj-bgdr
0 nb
b
b ‘o
= Lneb?
3

By Newton's law of spinning motion,
T ;
Q = m radians/sec.

[Note that it is correct to calculate the angular momentum A about
the centre of gravity G, even though G itself may be moving, by
Appendix 1 Theorem 3.]



