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1. Introduction and results

A complex number w will be called a linearly distributed value of the entire
function f(z) if there is a straight line / of the complex plane on which all the
solutions of f(z)=w lie. For functions of order less than one the occurrence
of such values is completely described by

Theorem 1. If f(z) is an entire transcendental function of order less than one,
then any two linearly distributed values are distributed on the same line; moreover,
the set of such values forms a closed straight line segment (which may reduce to
a single point or §) of the complex plane.

That the theorem is no longer true for functions of order one is shown by ¢*
for which every value is linearly distributed. This is in fact a characteristic
property of the exponential function:

Theorem 2. If f(z) is an entire function for which every value is linearly
distributed, then f(z) is either a polynomial of degree at most two or a function
of the form c+de®?, ¢, d, a constant.

2. Lemmas used in the proofs
Lemma 1. (EprEl[I].) Given a meromorphic function f(z) of the complex
variable z=re'® and given the q radii defined by
6)) re®t ret®, . re®, r=0),
where

0fw<w,< <o, <27, (gz1);

the roots of the equation f(2) =a are said to be distributed on the radii (1) if there
exist at most a finite number of roots of the equation which do not lie on the
radii (1).

With this definition one has:

Let f(2) be meromorphic and such that the roots of the three equations

@ f(@)=0,
€) J@)=c0,
4 fP@=1 (=0, fV=f)
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be distributed on the radii (1). Denote by 6(a, f\P) the deficiency of the vaiue a
of the function f¥ (in the sense of Nevanlinna), and assume

5 5(0, /) +6(1, S +8(c0, f)>0.
Then the order p of f(z) is necessarily finite and

s T

i
0) p<fB=su s yeers . W, =2n+w].
6) p=p P{wz__wl ws—, wqﬂ—coq} [wg+1 1]

Remark. In our applications f(z) will be entire, so that §(c0, f)=1 and (5)
is satisfied. Moreover [ will be 0. Linear transformations of z and of f will
enable us to replace (2) and (4) by

@) f@=a,
@ F@=b (+a)

and to assume the rays (1) (which will be one or two complete straight lines
corresponding to g=2 or 4) meet in some point other than z=0 without
modifying the conclusion (6).

A consequence of Lemma 1 found by EDREI [/] is

Lemma 2. Let f(z) be an entire function which is real on the real axis and
for which the equations f(z)=0, f(z2)=1 have only real solutions. Then for
O0<h<1 dll the roots of f(2)=h are real.

Lemma 3. Let f(z) be regular in the infinite angular sector D of aperture mfo
bounded by two rays which meet in the origin. Suppose that M, K, & are positive
constants, 6 <o and that

) [ f(2)| <M exp(K 1)
on the rays bounding D, while
8) [f(z)|=0(exp#®), as r=|z|>w

holds uniformly in D for some constant f<a. Then for constant

on
L= K/COS <—2_OC_)
one has

9 | f(@)|<Mexp(Lr®) inD.
Proaf. If (7) and (9) are replaced by the condition
7 [f@<M

the lemma reduces to the Phragmén-Lindeldf principle in the form given in
[3, p. 177]. One may obviously assume without loss of generality that D is the
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angular sector

¥
argzl<——
largz| o

and the slightly generalised form in Lemma 3 is obtained by applying the
simple form of the principle to the function f(z) exp(—Lz%).

From Lemma 3 we obtain

Lemma 4. If the order of the entire functionf(2) is <f, >0, and if as z— o
outside a number of disjoint angular sectors of the form D:

i
5
| f(2)| =0 (exp(K ")), B'<B, K constant,
then the order of f(2) is in fact <PB'.
Proof. For each D apply Lemma 3 to show f is O (eX™") (for some L) in D.

Lemma 5. (BIEBERBACH [I].) If there are two (nonm-infinite) values which
are taken at most a finite number of times by the entire function f(2) in the
angular D of aperture jo, then in every smaller sector contained in the interior
of D

191<argz<92, 92_81<

one has

f(@2)=0(exp(K|z|")) as z—w
for suitable constant K>0.

3. Proof of theorem 1

Suppose that all the solutions of f(z) =5 lie on the line /: z=x+ ¢, «, f con-
stant, — o0 <t< 0. Then

(10) F(2)=f(a+pz)—b

has only real zeros and can be written as a product

(11) F2)=Az"[] (1 “'EZ")
n=1 n

where A is a constant, m=>0 an integer and z, real. The function F(z)/4 is
real on the real axis, has only real zeros and has order less than one, so that
by a theorem of Laguerre (c.f. [3, p. 266]) all the zeros of

F'()Ad=Bf («+B2)

are real. Thus all the infinitely many zeros of f'(z) lie on the straight line /,
which is determined uniquely, independently of the value b.

From (10), (11) and the fact that F(z)/4 is real on the real axis it follows that
Theorem 1 is completed if we show that the set S of values w for which
F(z)[A=w has only real roots form a closed segment of the real w-axis. Lemma 2

19%*
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shows that S is connected (the values 0,1 can clearly be replaced by any other
real numbers in this lemma). On the other hand it is well known that S cannot
form the whole real line — indeed it is shown in [2] that S is bounded. If S
contains more than two points it consists of an open or closed interval from
ato b (>a). If f(z)=> has a non-real root z=¢, then for arbitrarily small
¢>0 the equation f(z)=b—¢ has a non-real root near z=c. Thus b (and
similarly a) belong to S=[q, bl.

4. Proof of theorem 2

It is clear that a polynomial has all its values distributed linearly if and only
if its degree is less than or equal to 2.

Suppose from now on that £(z) is a transcendental function for which every
value is linearly distributed. We prove firstly that the order of f(z) is finite:

Either (i) there are two values a, b distributed on two lines /,, J, which
intersect, and the result follows by Lemma 1, (Remark), with g=4, or (ii) all
lines /, are parallel. In case (ii) take the line /, on which all solutions of f(z)=a
lie and find a z on /, for which f(z)=>b=a. Then all solutions of f(z)="5 will
also lie on /, and we can apply Lemma 1 (Remark) to a, b distributed on g=2
rays consisting of the two ends of [,. Thus in either case f has finite order.

Next we show that the order of f(z) is £1. There are two cases to
consider:

Case (i): There are two values a, b (#a) for which /,, [, are parallel. Then
one can find two lines p, ¢ which intersect in the origin at an arbitrarily small
angle ¢ and such that two infinite angular sectors of aperture & formed by p, g
contain all but a bounded part of /[, and /,. The values a, b are taken at most
a finite number of times in the complementary sectors of aperture n—z¢, so that
by Lemma 5

| f(2)|=0 exp{K | z|™" "7}

in the complementary sectors. If ¢ is small enough Lemma 4 shows that the
order of f(z) is at most #/(z —¢) and hence is <1.

Case (ii): no two [, are parallel. Then for arbitrarily small 3 one can find
a, b such that [, [, intersect in an angle <38. The point of intersection may
not be the origin, but one can find lines p, g which intersect in the origin, make
an angle 3 with one another and such that the two infinite angular sectors of
aperture 3 formed by p, g contain all but a bounded part of /, and ;. In the
complementary sectors of aperture = — 34 the values ¢ and b are taken at most
a finite number of times so that in these sectors

| f@)=0exp {K|z|"""%}

and by Lemmas 4, 5 it follows as in case (i) that the order of f(z) is 1.

The final step is to shows that f'(z) does not take the value 0. Suppose
that there is a value z=uo for which /' (2)=0 and let f=Ff(«). Clearly the linear
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distribution of the value § implies that « is a simple zero of f'(2). If the equation

f(z)=P has any root y other than z=a we obtain a contradiction as follows:
Choose 0<d<|y—al/3. If one chooses a suitable w sufficiently close to f the
equation f(z)=w will have a root z;, in |z—y]<d and two roots z,, z; in
|z—u] < which are so placed that the line joining z, , z5 does not meet | z—1y| <J
and hence does not contain z;. It remains to dispose of the possibility that
the equation f(z)=p has no solution other than z=g¢, i.e. that f(z) is of the
form B+ K(z—o)?e*%, where K and a are non-zero constants. This function
has all its values linearly distributed if and only if the same is true of g(z)=z%¢".
For 0<c<e the equation g(z)=c has precisely three real roots so that the
values 0 <c<e are not distributed linearly.

Thus we have found that f” (z) has no zeros; like f(z) it has order 1 and must
take the form f'(z)=Ke%?, K, a constants; it follows that f(z) has the form
stated in Theorem 2.
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