Entire functions with linearly distributed values

By
Irvine Noel Baker

1. Introduction and results

A complex number w will be called a linearly distributed value of the entire function $f(z)$ if there is a straight line l of the complex plane on which all the solutions of $f(z)=w$ lie. For functions of order less than one the occurrence of such values is completely described by

Theorem 1. If $f(z)$ is an entire transcendental function of order less than one, then any two linearly distributed values are distributed on the same line; moreover, the set of such values forms a closed straight line segment (which may reduce to a single point or \emptyset) of the complex plane.

That the theorem is no longer true for functions of order one is shown by e^{z} for which every value is linearly distributed. This is in fact a characteristic property of the exponential function:

Theorem 2. If $f(z)$ is an entire function for which every value is linearly distributed, then $f(z)$ is either a polynomial of degree at most two or a function of the form $c+d e^{a z}, c, d, a$ constant.

2. Lemmas used in the proofs

Lemma 1. (Edrei [1].) Given a meromorphic function $f(z)$ of the complex variable $z=r e^{i \vartheta}$ and given the q radii defined by

$$
\begin{equation*}
r e^{i \omega_{1}}, r e^{i \omega_{2}}, \ldots, r e^{i \omega_{q}}, \quad(r \geqq 0) \tag{1}
\end{equation*}
$$

where

$$
0 \leqq \omega_{1}<\omega_{2}<\cdots<\omega_{q}<2 \pi, \quad(q \geqq 1)
$$

the roots of the equation $f(z)=a$ are said to be distributed on the radii (1) if there exist at most a finite number of roots of the equation which do not lie on the radii (1).

With this definition one has:
Let $f(z)$ be meromorphic and such that the roots of the three equations

$$
\begin{equation*}
f(z)=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f(z)=\infty, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
f^{(l)}(z)=1 \quad\left(l \geqq 0, f^{(0)} \equiv f\right) \tag{4}
\end{equation*}
$$

be distributed on the radii (1). Denote by $\delta\left(a, f^{(l)}\right)$ the deficiency of the value a of the function $f^{(l)}$ (in the sense of Nevanlinna), and assume

$$
\begin{equation*}
\delta(0, f)+\delta\left(1, f^{(l)}\right)+\delta(\infty, f)>0 \tag{5}
\end{equation*}
$$

Then the order ρ of $f(z)$ is necessarily finite and
(6) $\rho \leqq \beta=\sup \left\{\frac{\pi}{\omega_{2}-\omega_{1}}, \frac{\pi}{\omega_{3}-\omega_{2}}, \ldots, \frac{\pi}{\omega_{q+1}-\omega_{q}}\right\}, \quad\left[\omega_{q+1}=2 \pi+\omega_{1}\right]$.

Remark. In our applications $f(z)$ will be entire, so that $\delta(\infty, f)=1$ and (5) is satisfied. Moreover l will be 0 . Linear transformations of z and of f will enable us to replace (2) and (4) by

$$
\begin{align*}
& f(z)=a, \\
& f(z)=b(\neq a)
\end{align*}
$$

and to assume the rays (1) (which will be one or two complete straight lines corresponding to $q=2$ or 4) meet in some point other than $z=0$ without modifying the conclusion (6).

A consequence of Lemma 1 found by Edrer [1] is
Lemma 2. Let $f(z)$ be an entire function which is real on the real axis and for which the equations $f(z)=0, f(z)=1$ have only real solutions. Then for $0 \leqq h \leqq 1$ all the roots of $f(z)=h$ are real.

Lemma 3. Let $f(z)$ be regular in the infinite angular sector D of aperture π / α bounded by two rays which meet in the origin. Suppose that M, K, δ are positive constants, $\delta<\alpha$ and that

$$
\begin{equation*}
|f(z)|<M \exp \left(K r^{\delta}\right) \tag{7}
\end{equation*}
$$

on the rays bounding D, while

$$
\begin{equation*}
|f(z)|=O\left(\exp r^{\beta}\right), \text { as } r=|z| \rightarrow \infty \tag{8}
\end{equation*}
$$

holds uniformly in D for some constant $\beta<\alpha$. Then for constant

$$
L=K / \cos \left(\frac{\delta \pi}{2 \alpha}\right)
$$

one has

$$
\begin{equation*}
|f(z)|<M \exp \left(L r^{\delta}\right) \quad \text { in } D \tag{9}
\end{equation*}
$$

Proof. If (7) and (9) are replaced by the condition

$$
|f(z)|<M
$$

the lemma reduces to the Phragmén-Lindelof principle in the form given in [3, p. 177]. One may obviously assume without loss of generality that D is the
angular sector

$$
|\arg z|<\frac{\pi}{2 \alpha}
$$

and the slightly generalised form in Lemma 3 is obtained by applying the simple form of the principle to the function $f(z) \exp \left(-L z^{\delta}\right)$.

From Lemma 3 we obtain
Lemma 4. If the order of the entire function $f(z)$ is $\leqq \beta, \beta>0$, and if as $z \rightarrow \infty$ outside a number of disjoint angular sectors of the form D :

$$
\vartheta_{1}<\arg z<\vartheta_{2}, \quad \vartheta_{2}-\vartheta_{1}<\frac{\pi}{\beta}
$$

one has

$$
|f(z)|=O\left(\exp \left(K r^{\beta^{\prime}}\right)\right), \quad \beta^{\prime}<\beta, K \text { constant }
$$

then the order of $f(z)$ is in fact $\leqq \beta^{\prime}$.
Proof. For each D apply Lemma 3 to show f is $O\left(e^{L r \beta^{\prime}}\right)$ (for some L) in D.
Lemma 5. (Bieberbach [1].) If there are two (non-infinite) values which are taken at most a finite number of times by the entire function $f(z)$ in the angular D of aperture π / α, then in every smaller sector contained in the interior of D

$$
f(z)=O\left(\exp \left(K|z|^{\alpha}\right)\right) \quad \text { as } \quad z \rightarrow \infty
$$

for suitable constant $K>0$.

3. Pro of of theorem 1

Suppose that all the solutions of $f(z)=b$ lie on the line $l: z=\alpha+\beta t, \alpha, \beta$ constant, $-\infty<t<\infty$. Then

$$
\begin{equation*}
F(z)=f(\alpha+\beta z)-b \tag{10}
\end{equation*}
$$

has only real zeros and can be written as a product

$$
\begin{equation*}
F(z)=A z^{m} \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right) \tag{11}
\end{equation*}
$$

where A is a constant, $m \geqq 0$ an integer and z_{n} real. The function $F(z) / A$ is real on the real axis, has only real zeros and has order less than one, so that by a theorem of Laguerre (c.f. [3, p. 266]) all the zeros of

$$
F^{\prime}(z) / A=\beta f^{\prime}(\alpha+\beta z)
$$

are real. Thus all the infinitely many zeros of $f^{\prime}(z)$ lie on the straight line l, which is determined uniquely, independently of the value b.

From (10), (11) and the fact that $F(z) / A$ is real on the real axis it follows that Theorem 1 is completed if we show that the set S of values w for which $F(z) / A=w$ has only real roots form a closed segment of the real w-axis. Lemma 2
shows that S is connected (the values 0,1 can clearly be replaced by any other real numbers in this lemma). On the other hand it is well known that S cannot form the whole real line - indeed it is shown in [2] that S is bounded. If S contains more than two points it consists of an open or closed interval from a to $b(>a)$. If $f(z)=b$ has a non-real root $z=c$, then for arbitrarily small $\varepsilon>0$ the equation $f(z)=b-\varepsilon$ has a non-real root near $z=c$. Thus b (and similarly a) belong to $S=[a, b]$.

4. Proof of theorem 2

It is clear that a polynomial has all its values distributed linearly if and only if its degree is less than or equal to 2 .

Suppose from now on that $f(z)$ is a transcendental function for which every value is linearly distributed. We prove firstly that the order of $f(z)$ is finite:

Either (i) there are two values a, b distributed on two lines l_{a}, l_{b} which intersect, and the result follows by Lemma 1 , (Remark), with $q=4$, or (ii) all lines l_{a} are parallel. In case (ii) take the line l_{a} on which all solutions of $f(z)=a$ lie and find a z on l_{a} for which $f(z)=b \neq a$. Then all solutions of $f(z)=b$ will also lie on l_{a} and we can apply Lemma 1 (Remark) to a, b distributed on $q=2$ rays consisting of the two ends of l_{a}. Thus in either case f has finite order.

Next we show that the order of $f(z)$ is $\leqq 1$. There are two cases to consider:

Case (i): There are two values $a, b(\neq a)$ for which l_{a}, l_{b} are parallel. Then one can find two lines p, q which intersect in the origin at an arbitrarily small angle ε and such that two infinite angular sectors of aperture ε formed by p, q contain all but a bounded part of l_{a} and l_{b}. The values a, b are taken at most a finite number of times in the complementary sectors of aperture $\pi-\varepsilon$, so that by Lemma 5

$$
|f(z)|=O \exp \left\{K|z|^{\pi /(\pi-z)}\right\}
$$

in the complementary sectors. If ε is small enough Lemma 4 shows that the order of $f(z)$ is at most $\pi /(\pi-\varepsilon)$ and hence is $\leqq 1$.

Case (ii): no two l_{a} are parallel. Then for arbitrarily small ϑ one can find a, b such that l_{a}, l_{b} intersect in an angle $<\vartheta$. The point of intersection may not be the origin, but one can find lines p, q which intersect in the origin, make an angle ϑ with one another and such that the two infinite angular sectors of aperture ϑ formed by p, q contain all but a bounded part of l_{a} and l_{b}. In the complementary sectors of aperture $\pi-\vartheta$ the values a and b are taken at most a finite number of times so that in these sectors

$$
|f(z)|=O \exp \left\{K|z|^{\pi /(\pi-\vartheta)}\right\}
$$

and by Lemmas 4, 5 it follows as in case (i) that the order of $f(z)$ is 1.
The final step is to shows that $f^{\prime}(z)$ does not take the value 0 . Suppose that there is a value $z=\alpha$ for which $f^{\prime}(\alpha)=0$ and let $\beta=f(\alpha)$. Clearly the linear
distribution of the value β implies that α is a simple zero of $f^{\prime}(z)$. If the equation $f(z)=\beta$ has any root γ other than $z=\alpha$ we obtain a contradiction as follows: Choose $0<\delta<|\gamma-\alpha| / 3$. If one chooses a suitable w sufficiently close to β the equation $f(z)=w$ will have a root z_{1}, in $|z-\gamma|<\delta$ and two roots z_{2}, z_{3} in $|z-\alpha|<\delta$ which are so placed that the line joining z_{2}, z_{3} does not meet $|z-\gamma|<\delta$ and hence does not contain z_{1}. It remains to dispose of the possibility that the equation $f(z)=\beta$ has no solution other than $z=\alpha$, i.e. that $f(z)$ is of the form $\beta+K(z-\alpha)^{2} e^{a z}$, where K and a are non-zero constants. This function has all its values linearly distributed if and only if the same is true of $g(z)=z^{2} e^{z}$. For $0<c<e$ the equation $g(z)=c$ has precisely three real roots so that the values $0<c<e$ are not distributed linearly.

Thus we have found that $f^{\prime}(z)$ has no zeros; like $f(z)$ it has order 1 and must take the form $f^{\prime}(z)=K e^{a z}, K, a$ constants; it follows that $f(z)$ has the form stated in Theorem 2.

References

[1] Bieberbach, L.: Über eine Vertiefung des Picardschen Satzes bei ganzen Funktionen endlicher Ordnung. Math. Z. 3, 175-190 (1919).
[2] Edrei, A.: Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc. 78, 276-293 (1955).
[3] Trichmarsh, E.C.: The Theory of Functions, 2nd ed. Oxford 1939.

