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1. Introduction and results 

A complex number w will be called a linearly distributed value of the entire 
function f ( z )  if there is a straight line l of the complex plane on which all the 
solutions of f ( z ) =  w lie. For  functions of order less than one the occurrence 
of such values is completely described by 

Theorem 1. I f  f ( z )  is an entire transcendental function of order less than one, 
then any two linearly distributed values are distributed on the same line; moreover, 
the set of such values forms a closed straight line segment (which may reduce to 
a single point or O) of the complex plane. 

That the theorem is no longer true for functions of order one is shown by e z 
for which every value is linearly distributed. This is in fact a characteristic 
property of the exponential function: 

Theorem 2. I f  f ( z )  is an entire function for  which every value is linearly 
distributed, then f ( z )  is either a polynomial of degree at most two or a function 
of the form c +de az, c, d, a constant. 

(2) 

(3) 

(4) 
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2. Lemmas used in the proofs 

(EDREI [1].) Given a meromorphic function f ( z )  of the complex 

19 

Lemma 1. 
variable z = r  e io and given the q radii defined by 

(1) re ~1, re i~2 . . . .  , r e  ~q , (r>_O), 

where 
0=<col <c% < . . .  <coq<2=,  ( q = l ) ;  

the roots of the equation f ( z )  =a are said to be distributed on the radii (1) / f  there 
exist at most a finite number of roots of the equation which do not lie on the 
radii (1). 

With this definition one has: 

Let f ( z )  be meromorphic and such that the roots of the three equations 

f(z)=O, 

f(z)=oo, 

f ~  1 (I>O, f(o)=_f) 
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be distributed on the radii (1). Denote by 3 (a , f  (~ the deficiency qf the value a 
of the function f (0 (in the sense of Nevanlinna), and assume 

(5) 8(0, f) +8(i, f~')) +6(~, f)>o.  

Then the order p o f f (z )  is necessarily finite and 

�9 , ,  , ~ (6) p=<fl=sup -ro2_-ml , c~176 2 , , ~ 1 7 6  

Remark. In our applicationsf(z) will be entire, so that 6 ( o o , f ) =  1 and (5) 
is satisfied. Moreover l will be 0. Linear transformations of z and of f will 
enable us to replace (2) and (4) by 

(2') f ( z )=a ,  

(4/  f ( z ) = b  ( 4=a) 

and to assume the rays (1) (which will be one or two complete straight lines 
corresponding to q = 2  or 4) meet in some point other than z = 0  without 
modifying the conclusion (6). 

A consequence of Lemma 1 found by EDREI [1] is 

Lemma 2. Let f (z )  be an entire function which is real on the real axis and 
for which the equations f ( z )= 0 ,  f ( z )=  1 have only real solutions. Then for 
O<_h<_ i all the roots of f ( z ) = h  are real. 

Lemma 3. Let f ( z )  be regular in the infinite angular sector D of aperture zc/~ 
bounded by two rays which meet in the origin. Suppose that M, K, 6 are positive 
constants, 6 < o~ and that 

(7) [ f ( z )  [ < M exp (K r ~) 

on the rays bounding D, while 

(8) I f ( z )  1 = 0 ( e x p / ) ,  a s  r = I z 1-~ oo 

holds uniformly in D for some constant fl<o~. Then for constant 

L =  K/cos ( 2 ~ )  

one has 

(9) t f ( z ) k<Mexp(Lr  ~) in D. 

Proof. If (7) and (9) are replaced by the condition 

(7') [f(z) [ < M 

the lemma reduces to the Phragm6n-Lindel6f principle in the form given in 
[3, p. 177]. One may obviously assume without loss of generality that D is the 
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angular sector 

i argz j <-~-~ 

and the slightly generalised form in Lemma 3 is obtained by applying the 
simple form of the principle to the function f ( z ) e x p  ( -Lz~) .  

From Lemma 3 we obtain 

Lemma 4. I f  the order of the entire function f (z) is <= fl, fl > O, and if as z ~ oo 
outside a number of disjoint angular sectors of the form D: 

01 <arg  z < 02, 

one has 
I f ( z )  I = O (exp (K r r 

then the order o f f ( z )  is in fact  <=fl'. 

7g 

0 2 - 0 1 < - f t .  

fl' <fl, K constant, 

Proof. For each D apply Lemma 3 to s h o w f  is O (e Lrp') (for some L) in D. 

Lemma 5. (BI~BERBAC~ [1].) I f  there are two (non-infinite) values which 
are taken at most a finite number of times by the entire.function f ( z )  in the 
angular D of aperture ~/~, then in every smaller sector contained in the interior 
old 

f ( z )=O(exp (g l z l=) )  as z ~ o o  

for  suitable constant K> O. 

3. Pro of of theorem 1 

Suppose that all the solutions o f f ( z ) = b  lie on the line l: z = ~ + f l t ,  ~, fl con- 
stant, - ~ < t < ~ .  Then 

(10) F(z )=f (~  + f l z ) - b  

has only real zeros and can be written as a product 

(11) F(z)=Az I7 1 -  z , 

n = l  

where A is a constant, m > 0  an integer and z, real. The function F(z)/A is 
real on the real axis, has only real zeros and has order less than one, so that 
by a theorem of Laguerre (c.f. [3, p. 266]) all the zeros of 

F' ( z ) /A=f i f '  (c~ + flz) 

are real. Thus all the infinitely many zeros of f ' ( z )  lie on the straight line l, 
which is determined uniquely, independently of the value b. 

From (10), (11) and the fact that F(z)/A is real on the real axis it follows that 
'Theorem 1 is completed if we show that the set S of values w for which 
F(z)/A = w has only real roots form a closed segment of the real w-axis. Lemma 2 

19" 



266 IRVINE NOEL BAKER: 

shows that S is connected (the values 0,1 can clearly be replaced by any other 
real numbers in this lemma). On the other hand it is well known that S cannot 
form the whole real line - indeed it is shown in [2] that S is bounded. If S 
contains more than two points it consists of an open or closed interval f rom 
a to b (>a ) .  I f f (z)=b has a non-real root z=e, then for arbitrarily small 
~>0  the equation f ( z ) = b - e  has a non-real root near z=e, Thus b (and 
similarly a) belong to S = [a, b]. 

4. Proof of theorem 2 

It  is clear that a polynomial has all its values distributed linearly if and only 
if its degree is less than or equal to 2. 

Suppose from now on tha t f (z )  is a transcendental function for which every 
value is linearly distributed. We prove firstly that the order of f(z) is finite" 

Either (i) there are two values a, b distributed on two lines la, lb which 
intersect, and the result follows by Lemma 1, (Remark), with q =  4, or (ii) all 
lines l a are parallel. In case (ii) take the line la on which all solutions o f f ( z ) =  a 
lie and find a z on l, for whichf(z)=b =~a. Then all solutions off(z)=b will 
also lie on l a and we can apply Lemma 1 (Remark) to a, b distributed on q = 2  
rays consisting of the two ends of l~. Thus in either case f has finite order. 

Next we show that the order of f(z) is _<_1. There are two cases to 
consider: 

Case (i): There are two values a, b (4=a) for which Ia, Ib are parallel. Then 
one can find two lines p, q which intersect in the origin at an arbitrarily small 
angle ~ and such that two infinite angular sectors of aperture ~ formed by p, q 
contain all but a bounded part  of l a and I b. The values a, b are taken at most 
a finite number  of times in the complementary sectors of aperture ~r- e, So that 
by Lemma 5 

I f (z)  I = 0 exp { / I z l  =/<=-")} 

in the complementary sectors. If s is small enough Lemma 4 shows that the 
order o f f (z )  is at most ~z/(=- 5) and hence is =< 1. 

Case (ii): no two l, are parallel. Then for arbitrarily small 0 one can find 
a, b such that la, lb intersect in an angle < 0. The point of intersection may 
not be the origin, but one can find lines p, q which intersect in the origin, make 
an angle 0 with one another and such that the two infinite angular sectors of 
aperture ~ formed by p, q contain all but a bounded part  of la and l b. In the 
complementary sectors of aperture ~z-0  the values a and b are taken at most 
a finite number of times so that in these sectors 

[ f (z )  I = O exp {Klz I ~/(=-~)} 

and by Lemmas 4, 5 it follows as in case (i) that the order of f(z) is 1. 

The final step is to shows that f ' (z)  does not take the value 0. Suppose 
that there is a value z =  a for wh i ch f '  (e )=  0 and let fl =f(•). Clearly the linear 
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distribution of the value fl implies that  e is a simple zero o f f '  (z). If  the equat ion 
f ( z )  = fl has any root  7 other  than  z =  c~ we obtain a contradict ion as follows: 
Choose 0<,5<I~-~1/3. If  one chooses a suitable w sufficiently close to fl the 
equat ion f ( z ) = w  will have a roo t  z l ,  in I z -~ l<O and two roots  zz, z 3 in 
[ z -  c~ [ < 6 which are so placed that  the line joining z2, z 3 does not  meet ] z -  ? ] < 6 
and hence does not  contain z 1 . I t  remains to dispose of the possibility that  
the equat ion f ( z )=f l  has no solution other than  z=c~, i.e. that  f ( z )  is of the 
fo rm fl + K ( z -  e)z ea~, where K and a are non-zero constants. This funct ion 
has all its values linearly distributed if and only if the same is true of g (z) = z 2 eL 
Fo r  0 < c < e  the equat ion g( z )=c  has precisely three real roots  so that  the 
values 0 < c < e are no t  distributed linearly. 

Thus we have found  t h a t f '  (z) has no zeros;  l ikef(z)  it has order 1 and must  
take the fo rm f '  (z)= Ke az, K, a constants;  it follows that  f ( z )  has the fo rm 
stated in Theorem 2. 
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