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1. Introduetion.
Let F(z) be an entire analytic function. Define the n-th iterate of F'(2):
(1) Foz) = 2, Fouy(2)=F{F, ()} =F{F(z)}, n=012,....

These iterates of positive integral order are entire functions satisfying the
functional equations

{2) F {Fn ()} = Fo{F,(2)}= Frin(2)

where m and n are positive integers, One may also introduce the iterates of
negative integral order by writing F_,, (2) for the inverse function of F,,(2).
Thereby many-valued functions are introduced but the equations (2) remain
valid for a suitable choice of branches.

ScERODER [1], [2] originally studied the “natural’ iterates (i.e. those of
integral order) with a view to finding for F,(z) a closed analytic expression
containing n as a parameter. The iterates of non-integral order then appeared
simply by assigning non-integral values to this parameter. A modern work
which treats iterates of “complex order” is that of TOPFER [3]. JuLiA [4] and
Farou [5], [6] have made a thorough investigation of the natural iteration of
rational and entire functions, relying on MoNTEL’s theory of normal sequences
of analytic functions.

In the following we shall be interested in (analytic) solutions f(z) of the
functional equation
(3) f{f(z)} = F(z), F(z) entire.

The problem which forms the basis of this paper is:

What restrictions must be placed on F(z) if there are to be entire solu-
tions f(z)?

The main theorem 1 bears directly upon this point, and in section 3 we
discuss some cases not covered by the theorem. In the final section some applica-
trons of theorem 1 are made, in particular to discussing further KNEsER’s [7]
treatment of the case F (z) = €.

2, The Case Where F(z) is of Finite Order and Bounded
on & Curve Leading to Infinity,
Theorem 1. If F(z) is an entire function of finite order bounded on some
continuous curve I' which extends to infinity, then the functional equation

@) @)} = F(z)

has no entire solution.
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Proof: If {(z) is an entire solution of (3) it must be of zero order, as follows
from the following result of FAarovu (6, p. 343]:

Let E(z), F(z) be two entire transcendental functions. On |z| =r the
maximum modulus of E (z) is M (r), that of E {F(z)} is M,(r). Then however
large we choose the positive constant ¢, we have for certain arbitrarily large
values of r:

M, (r) > M(r9).

It follows that if @ > 0 be the order of f(z), the order of F (z) is greater than
g(a — £) however large ¢ and however small ¢; i. e. F(z) is of infinite order,
against assumption.

Now consider the behaviour of f(z) on I'. Either f(z) is bounded on I" or
it maps I” on to & continuous curve y which extends to infinity. But F(z)
= f{f(2)} is bounded on I so that in the latter case f(z) is bounded on y, and
in either event f(z} is bounded on a continuous curve extending to infinity,
which is impossible for an entire function whose order is less than 4+ — ons
recalls the vesult [8, p. 274] that for a function g(z) with this property there
is a sequence of values of r tending to infinity through which

min |g(2)| — oo.
|2l =7
Corollary. If F (2) is of finite order and there is an exceptional value 4 which
F(z) takes at most a finite number of times, then {3) has no entire solution.
For such an exceptional value is an asymptotic value [9, p. 34] and on the
curve extending to infinity along which F (z) tends to 4, F (2) will be bounded.

3. Cases not Treated in the Last Section.

It is obvious that there are functions F(z) such that f(z) may be entire:
exp (exp z) is such a function, but its order is infinite, The question arises
as to whether this is possible when F'(z) is of finite order, and this is answered
by the provision of examples which demonstrate the possibility. In fact we
can prove the

Theorem 2. There exist entire functions f,(2), f;(z) and f3(2) of zero order
such that

(1) fi{fi(2)} is of zero order
(ii) f{fs(2)} is of infinite order
(iii) fa{fs(z)} is of finite non-zero order.

Remarks: Where it is necessary to check the order of the functions intro-
duced below one uses the result that if ¢ is the order of the function ) a,2",
n=0
one has [10, p. 40]

Use is made of the notations with respeot to f(2) = X a,2":
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u(r): the maximum term of the sequence |a,| r".
v(r): the central index, the index of the maximum term.
M (r): the maximum for |z| = r of |f(z}|.
M’ (r): the maximum for [z] = r of |f {f(2)}].
Tt is to be noted that these four functions are monotone increasing.
We reserve square brackets to have the meaning: [4] is the greatest in.

teger not exceeding 4.
The discussion depends on the lemma.:

(4) ,u(r)<M(r)<p(r){1+2v(r+v—:r)—)},

proved in [9, p. 32] and the fact that we deal with functions for which the
coefficients a, are real and positive, so that

M(r)=f{r), M'(r) = f{{(")} = M {M(r)}.
Proof of Theorem 2.

. s P
(l) Take f]_ (Z) = %' W
Forr>1: »(r)= [}j—-zbgr]
[l-Hogr] 1+ logr
r 2 ¥ 2

) {5

A simple consideration of (4) shows that for all large enough r
M(r) < exp {3 (logr)%}

and M (r) < exp {F (logr)%},

so that the order of f,{f,(r)} is 0.

oo zn

(ii) Take f,(z) = %' exp {n (log ny}

Now for continuous 7, exp {nlogr—n(logn)?} has its maximum where

n=n(r) = exp(—14 1+ 1logr) > exp(} Viog 7) for r > €%

Certainly
p(r) = exp {[n(r)]log r — [n(r)] (log [»(r)])?}
= exp {(n(r) — 1) (log r — log n(r) - log n(r))}
> exp {exp (% Vl?g—;)} for sufficiently large r.
From (4)

M'(r) > p{u(r)} >exp {GXP%;' Vexp % 1- log r}
which is not bounded by any expression of the form exp(r4) and shows that
fs{f2(2)} is of infinite order.

(ili) We deal now with the comparatively intricate problem of constructing
such an fy(2) that f;{f;(2)} has finite non-zero order. The first step here is to
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produce a suitable real (nonanalytic) function @(r) satisfying @ {®(r)} = e".
By taking a series with positive coefficients, for which u(r) is fairly close
to @ (r), a satisfactory fy(z) is obtained as is suggested by (4). Firstly then we
prove the

Lemma: There is a continuously differentiable function @ (r) such that

O(D() = e and the four functions B(r), &' (1), - and ';’('g’ all tend

monotonely (for » > 1) to infinity with . We introduce the notation: I, is the
interval 0 < r < 1. In general I, is defined inductively: I, is the image of

I, under the mapping = — ¢%. }, I, covers the positive real line. We assert
n=">0

that the conditions of the lemma are satisfied by the function defined in I, by
(r)y=r+ % osrg%}
= exp(r — %) F<r=1
and defined in I, generally by repeated application of the relation
(6) D (e7) = exp {P (1)}
Thus, for example, in I;:
Dr)y=celrr, 1=rg e‘/’}
=exp (e~ ir), ehsr=sel

Obviously in I,: @ {®(r)} = e”, and it then follows from (5) that this is so
in every I,.

Now the four functions mentioned in the lemma are all continuous and
monotone increasing in I,. Using the method of induction, suppose this is
true in any I,. Differentiating (5) gives

e’ @'(e7) ,
ey = 20

is continuous and monotone increaging in I,,,. A similar

r @(r)
so that 0

result follows for the other functions from the identities
D)
6"

= exp {D(r) —1}

and @' (e") = @' (r) exp {D(r) —r}. Since the functions increase monotonely

with 7, they either tend to infinity or are bounded and tend to a finite limit.

In each case the latter supposition conflicts with the fact that @ {®(r)} = e".
r®’(r)

Thus for example if o) tends to ! as r tends to infinity:

d
= (er) ’
dr o' {P(r)} @’ (r)
=" Fam; PN P
as r — oo, since @ (r) - co monotonely with r; but this is obviously false.
If ¢(r), D' (r) or 2t are bounded then certainly there is a K such that

r
@ (r) < K r and e" = O{®D(r)} < K*r which is impossible. This completes the
proof of the lemma.

ro=-
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The function fy(z). The functions x(r), »(r) defined above are connected
by the relation

® log 4s(r) = log lay] + [ ot da
1)

where a,+0 is the constant term in the expansion of the relevant entire
funotion. #(r) is & (monotonely inocreasing) step function with & denumerably
infinite set of isolated discontinuities 7,>0,n = 1, 2, . . ., at each of which »(r)
increases by an integer. As Varieox [10, p. 28—30] shows, to any such »(r)
given in advance one can construct a number of entire functions which have
»(r) as their central index function. For a given choice of |ay| & 0, it is possible
to find one of these whose coefficients are real and positive and which is
in fact a majorant of all similar functions. Having chosen v(r) and a, it is
this function which, for definiteness, we shall use for f;(z).
We choose for »(r):

p(r) =1+ [”D('(;)], r=1
=0, 0<r<0-1
=2, 0:1=r<l

Then
[ [
and

r r
¥(x) D’ (z)
6[ z dx>/m—dx, r>e.
0

When one makes a, =¥, (6) becomes

,
log,u(r)—log2+/ dx>log§-+6[g((:)) dx >log @(r), r>e.

Then M'(r) > u{ulr)} > @ {®(r)} = ¢". But on the other hand

1 r
D’ 1
log u(r) <log%+f1§:—)dx+{/ [ ¢((:)) +_5}dx,
0
so that for some positive K
u({r) < Kr®(r).
For all » > 0+1, »(r) > 1, so that from (4) and the line above:

Mir)<Krd(r) {1 + 2+ 2(r + 1)—45—((’:-{__%!%] < 3Kr3%g-—_~+__i-—l%)—d§(r)
for large enough r.

Now @ (D)} = e” = = (1) = D (D)} - &' (1)
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from which one sees that @’ (r) < @ (r) for all r > 1; so that:
(7) M(r) < 3K r*d(r).
However small § > 0 may be,
d @ (rl + 8) D'(1+9) r@d(r)
Tar {1 @ (r) DHI+3)  D(r)

tends to infinity with r, and so remains greater than arbitrarily large ¥ for
r>r(N). A simple integration shows that there exists a positive real
such that

| = (1 + 8 riee

D+ > Cr¥d(r), r>r(N).
With this result (7) becomes
(8) M(r) < D(rt*9)
Since r %«'((%» oo with # it follows that for large r,
r < {@)
however small o > 0 is chosen, and replacing r by @(r):
D(r) < et
From this result, (7) and (8) it follows that
M (r)=M{M{r)} <3K{D(**)P O {D(7*)}
< 3K exp {r1td + 2x r1+%},

But « and 8 may be chosen arbitrarily small, so that the order of f;3{f3(z)} is
exactly 1. The order of f;(z) can only be zero.

4., Consequences of Theorem 1.

We now apply the main theorem to derive a property of analytic solutions
of (3).

In the iteration of an entire function F'(z) there arises & set & (¥) which is
of great importance: {(F) is the set of points z where the iterates F,(z) of
positive integral order do nof form a normal family in the sense of MONTEL.

The term “Fatou exceptional point” is used to denote a point a such
that the equation F (z) = « has no solution in z, except possibly z = «. There
can be at most one such point.

FaTou [6] has investigated the set & (F) thoroughly and has proved the
following result:

Let ¢ be a small circle surrounding z,¢ F(¥), and c, its image under the
transformation z — F, (z). If 4 is any bounded region of the plane excluding
a small circle d about the Fatou exceptional point if this exists, then for
sufficiently large #, ¢, will cover 4.

From this follows

Theorem 3. If f(z) is an analytic solution of (3), where F (2) is bounded on
some curve extending to infinity and f(z) is analytic at any one point of & (F)
and also at the Fatou exceptional point if this exists, then f(z) cannot be
single-valued.
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Proof: Suppose f(z) single-valued and analytic at z,¢ & (¥). Take for ¢
a circle surrounding z, in which the expansion of f(z) about z, converges.
Then f(z) may be continued into any c, by repeated application of the relation

FF ()} = f[H{{(2)}] = F {{(2)}.
If a Fatou exceptional point « exists, take a circle d about « in which f(2) is
analytic. Then if D is any bounded region, of the plane our procedure of
continuation shows that f(z) is analytic in D— «, and hence in D; that is
f(2) is entire, against theorem 1. q.e.d.

The instance of F(z) = ¢* is of particular interest and has been treated by
KNESER [7], who has constructed a solution f(z) of (3) which on the whole
real axis is analytic and real. e* has the exceptional value 0, and T6rFER [11]
has shown that every point of the real axis belongs to {(e*). It follows that
K~ESER's solution is not single-valued.
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